High-Dimensional Photonics Accelerates Quantum Computing
en-GBde-DEes-ESfr-FR

High-Dimensional Photonics Accelerates Quantum Computing


A new study has made significant progress in quantum computing through photonic-measurement-based quantum computation. Their innovative method uses high-dimensional spatial encoding to create large cluster states more efficiently, addressing key challenges in scalability and computation speed. This paves the way for faster, resource-efficient, and fault-tolerant quantum computers.

[Hebrew University] A new study, published in Nature Photonics, by Prof. Yaron Bromberg and Dr. Ohad Lib from the Racah Institute of Physics at the Hebrew University of Jerusalem has made significant strides in advancing quantum computing through their research on photonic-measurement-based quantum computation. This method holds the potential to overcome some of the challenging obstacles in quantum computation, offering a more scalable and resource-efficient solution by using high-dimensional spatial encoding to generate large cluster states.

Quantum computers are facing a major roadblock in producing large cluster states necessary for computations. The standard approach sees detection probabilities decreasing exponentially as the number of photons increases. Prof. Bromberg and Dr. Lib's study addresses this issue by encoding multiple qubits within each photon through spatial encoding. This innovative approach has successfully generated cluster states with over nine qubits at a frequency of 100 Hz, a remarkable achievement in the field.

Additionally, the researchers demonstrated that this method substantially reduces computation time by enabling instantaneous feedforward between qubits encoded within the same photon. This breakthrough opens the door to more resource-efficient quantum computations, potentially leading to faster, fault-tolerant quantum computers capable of handling complex problems.

Prof. Bromberg commented, "Our results show that using high-dimensional encoding not only overcomes previous scalability barriers but also offers a practical and efficient approach to quantum computing. This represents a major leap forward."

Dr. Lib added, "By tackling both scalability and computation duration issues, we've paved a new way forward for measurement-based quantum computation. The future of quantum technology just became a little closer."

This study marks an important milestone in the ongoing pursuit of realizing the full potential of quantum computing through photonics.
The research paper titled “Resource-efficient photonic quantum computation with high-dimensional cluster states” is now available at Nature Photonics and can be accessed at https://doi.org/10.1038/s41566-024-01524-w.

Researchers:
Ohad Lib, Yaron Bromberg

Institution:
Racah Institute of Physics, The Hebrew University of Jerusalem
Regions: Middle East, Israel
Keywords: Applied science, Technology, Engineering

Disclaimer: AlphaGalileo is not responsible for the accuracy of news releases posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Referenzen

We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet
AlphaGalileo is a great source of global research news. I use it regularly.
Robert Lee Hotz, LA Times

Wir arbeiten eng zusammen mit...


  • BBC
  • The Times
  • National Geographic
  • The University of Edinburgh
  • University of Cambridge
  • iesResearch
Copyright 2024 by DNN Corp Terms Of Use Privacy Statement