Unlocking a new path to AML treatment: targeting the JMJD1C-RUNX1 axis for leukemia progression control
en-GBde-DEes-ESfr-FR

Unlocking a new path to AML treatment: targeting the JMJD1C-RUNX1 axis for leukemia progression control

03.03.2025 TranSpread

Acute myeloid leukemia (AML) is one of the most aggressive and genetically complex cancers, marked by the unchecked growth of immature myeloid cells. Its diversity stems from numerous genetic alterations that disrupt normal blood cell development, presenting significant challenges in developing effective, universal therapies. While current treatments often target specific genetic abnormalities, they fall short of addressing the underlying transcriptional networks that sustain leukemia. Uncovering shared vulnerabilities across AML subtypes has become a pressing priority to devise more inclusive and effective therapeutic strategies.

In a study (DOI: 10.1093/procel/pwae059) published on October 25, 2024, in the journal Protein & Cell, researchers from Tsinghua University and The Rockefeller University revealed an unprecedented role for JMJD1C in regulating gene expression in AML cells. By interacting with RUNX1, a critical transcription factor, JMJD1C drives leukemia cell survival, making it a compelling therapeutic target. This discovery sheds light on how molecular mechanisms underpinning AML could be disrupted to combat this aggressive disease.

The research delves into how JMJD1C facilitates leukemia cell survival by forming liquid-like condensates through its intrinsically disordered N-terminal region. This unique feature enables JMJD1C to be recruited by RUNX1 to genomic loci, including super-enhancers (SEs). These interactions activate key genes responsible for AML cell proliferation and metabolic processes, maintaining the leukemic state. Importantly, the study highlights that JMJD1C’s non-catalytic functions are critical, with its condensate-forming ability being essential for RUNX1 recruitment and gene regulation. Key experiments revealed that disrupting JMJD1C's N-terminal region impairs its ability to form condensates and interact with RUNX1, leading to reduced leukemia cell viability. Moreover, JMJD1C’s RUNX1-containing condensates might mediate enhancer-promoter interactions crucial for the expression of key leukemic genes regulated by RUNX1. These findings underscore the therapeutic potential of targeting the JMJD1C-RUNX1 axis to halt leukemia progression.

Dr. Mo Chen, one of the senior authors of the study, highlighted the transformative potential of these findings: This research uncovers a previously unappreciated role for JMJD1C in leukemia biology. By elucidating its interaction with RUNX1, we can now envision therapeutic strategies that target this axis across diverse AML subtypes.

The discovery of JMJD1C's role in AML cell survival opens a new frontier in leukemia treatment. By targeting the JMJD1C-RUNX1 interaction, researchers hope to disrupt the transcriptional programs sustaining leukemia cells, offering a universal strategy to tackle AML's heterogeneity. This approach holds promise for overcoming resistance to current therapies and improving patient outcomes. Future research will focus on translating these molecular insights into clinical interventions, heralding a new era in the fight against leukemia.

###

References

DOI

10.1093/procel/pwae059

Original Source URL

https://doi.org/10.1093/procel/pwae059

Funding information

This work was funded by National Key R&D Program of China (grant 2021YFA1300100 to M.C.), Beijing Municipal Natural Science Foundation (grant JQ23024 to M. C.), Leukemia and Lymphoma Society (grant 7021-20 to R.G.R), National Natural Science Foundation of China (grant 32300445 to Q.C.) and a Tsinghua-Peking Center for Life Sciences postdoctoral fellowship to Q.C..

About Protein & Cell

Protein & Cell is a fully open access, peer-reviewed journal that publishes research concerning the latest developments in multidisciplinary areas in biology and biomedicine, with an emphasis on protein and cell research. Subject areas include biochemistry, biophysics, cell biology, developmental biology, genetics, immunology, microbiology, molecular biology, neuroscience, oncology, protein science, structural biology and translational medicine. In addition, Protein & Cell addresses research highlights, news and views, and commentaries covering research policies and funding trends in China, and provides a forum to foster academic exchange among researchers across different fields of the life sciences.

Paper title: JMJD1C forms condensate to facilitate a RUNX1-dependent gene expression program shared by multiple types of AML cells
Angehängte Dokumente
  • JMJD1C N-terminus mediates formation of RUNX1-DNA droplets.
03.03.2025 TranSpread
Regions: North America, United States, Asia, China
Keywords: Health, Medical

Disclaimer: AlphaGalileo is not responsible for the accuracy of content posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Referenzen

We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet
AlphaGalileo is a great source of global research news. I use it regularly.
Robert Lee Hotz, LA Times

Wir arbeiten eng zusammen mit...


  • BBC
  • The Times
  • National Geographic
  • The University of Edinburgh
  • University of Cambridge
  • iesResearch
Copyright 2025 by DNN Corp Terms Of Use Privacy Statement