Making Waves: Generation of Intense Terahertz Waves with a Magnetic Material
en-GBde-DEes-ESfr-FR

Making Waves: Generation of Intense Terahertz Waves with a Magnetic Material

20/06/2024 Tohoku University

Terahertz waves are being intensely studied by researchers around the world seeking to understand the "terahertz gap". Terahertz waves have a specific frequency that put them somewhere between microwaves and infrared light. This range is referred to as a "gap" because much remains unknown about these waves. In fact, it was only relatively recently that researchers were able to develop the technology to generate them. Researchers at Tohoku University have brought us closer to understanding these waves and filling in this gap of knowledge.

Researchers at the Advanced Institute for Materials Research (WPI-AIMR) and Graduate School of Engineering have discovered a new magnetic material that generates terahertz waves at an intensity about four times higher than that of typical magnetic materials.

Taking advantage of the features unique to terahertz waves, this technology is expected to be used in a variety of industrial fields, including imaging, medical diagnostics, security inspection, and biotechnology. Assistant Professor Ruma Mandal (WPI-AIMR) explains, "Terahertz waves have low photon energies and unlike X-rays, they don't emit ionizing radiation. So, if they are used for patient imaging or microscopes, they may be less damaging to tissues or samples."

With these applications in mind, a team of researchers at Tohoku University aimed to develop an efficient, compact, sturdy, and cost-effective terahertz wave emitter. Weyl magnets - a type of topological material - have been shown to generate a huge anomalous Hall effect that make them suitable for generating terahertz waves. In this study, single-crystal thin-film samples of a Weyl magnet made from a cobalt-manganese-gallium Heusler alloy were prepared and studied under various conditions.

It was found that the giant anomalous Hall effect originating from the topological electronic structure unique to Weyl magnets enhanced the photo-induced terahertz waves. This achievement will deepen our understanding of the interplay of light and spin in Weyl magnets.

"Although the intensity of the terahertz waves generated is still lower than that of spin-excitation terahertz emitters developed to date," says Professor Shigemi Mizukami, "the structure is simpler and expensive heavy metals such as platinum are no longer required."

Mandal and their colleagues were able to experimentally demonstrate the ability of this magnetic material to produce terahertz waves, so that it can be used in spintronic devices and other important applications. Such a discovery in a newly emerging field could shape the future of next generation technologies.

This work was published in NPG Asia Materials on June 7, 2024.
Title: Topologically-Influenced Terahertz Emission in Co2MnGa with Large
Anomalous Hall Effect
Authors: Ruma Mandal, Ren Momma, Kazuaki Ishibashi, Satoshi Iihama, Kazuya Suzuki, and Shigemi Mizukami
Journal: NPG Asia Materials
DOI: https://doi.org/10.1038/s41427-024-00545-9
Attached files
  • (a) Weyl magnet: schematic diagram of a crystal of cobalt-manganese-gallium Heusler alloy (Co2MnGa). (b) Light-induced terahertz waves.
  • (a) Photo-induced terahertz waves generated from the Weyl magnet: cobalt-manganese-gallium Heusler alloy (Co2MnGa) thin film observed in this study. (b) Anomalous Hall effect observed in the corresponding thin film sample.
20/06/2024 Tohoku University
Regions: Asia, Japan
Keywords: Science, Physics, Applied science, Technology

Testimonials

For well over a decade, in my capacity as a researcher, broadcaster, and producer, I have relied heavily on Alphagalileo.
All of my work trips have been planned around stories that I've found on this site.
The under embargo section allows us to plan ahead and the news releases enable us to find key experts.
Going through the tailored daily updates is the best way to start the day. It's such a critical service for me and many of my colleagues.
Koula Bouloukos, Senior manager, Editorial & Production Underknown
We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet

We Work Closely With...


  • BBC
  • The Times
  • National Geographic
  • The University of Edinburgh
  • University of Cambridge
Copyright 2024 by AlphaGalileo Terms Of Use Privacy Statement