Grafted cucumbers get a boost: pumpkin's secret to withstanding salinity
en-GBde-DEes-ESfr-FR

Grafted cucumbers get a boost: pumpkin's secret to withstanding salinity

21/06/2024 TranSpread

Soil salinity, a silent blight on global agriculture, affects an estimated 10% of the world's arable land, leading to significant crop yield losses. This environmental stress not only stunts plant growth but also triggers a cascade of physiological responses, including ion toxicity, oxidative damage, and osmotic imbalances, which can be lethal to plants. The urgency to address this issue is underscored by the need for sustainable agricultural practices that can withstand the increasing soil salinity, a consequence of climate change and unsustainable irrigation methods.

Researchers at Huazhong Agricultural University have made a significant breakthrough in the field of horticulture. Their study (DOI: 10.1093/hr/uhae057), published in the prestigious journal Horticulture Research on February 28, 2024, reveals the role of the CmoDREB2A gene from pumpkin in improving the salt tolerance of cucumbers through grafting techniques.

This pioneering study delves deep into the molecular dynamics at play when pumpkin's CmoDREB2A gene is introduced into cucumber through grafting. The research meticulously documents how this gene interacts with the cucumber's CmoNAC1 to form a robust regulatory mechanism that enhances the plant's salt tolerance. The duo's synergistic action triggers an upregulation of antioxidant and hormone production, specifically hydrogen peroxide (H2O2) and abscisic acid (ABA), which are pivotal for managing the oxidative and osmotic stress induced by high salinity. Additionally, the study elucidates the gene complex's role in modulating the K+/Na+ ion balance, a key determinant of cellular health under saline conditions. The intricate interplay between these transcription factors and their target genes provides a comprehensive understanding of the genetic architecture supporting salt tolerance, offering a molecular breeding strategy that could lead to the development of crops better equipped to flourish in saline environments.

Dr. Zhilong Bie, corresponding author, emphasizes, "Our findings not only provide insights into the molecular mechanisms of plant adaptation to saline environments but also pave the way for developing new strategies in molecular breeding to combat soil salinization."

The application of these findings could revolutionize agricultural practices in saline-affected regions, potentially increasing crop yields and ensuring food security. The implications of this research extend to global agriculture, offering a sustainable solution to one of the most pressing abiotic stressors in farming.

###

References

DOI

10.1093/hr/uhae057

Original Source URL

https://doi.org/10.1093/hr/uhae057

Funding information

This research was supported by grants from the National Natural Science Foundation of China (32372794, 31772357, 32072653), Natural Science Foundation of Hubei Province (2019CFA017), Ningbo Scientific and Technological Project (2021Z006), and the Fundamental Research Funds for the Central Universities (2662023YLPY008).

About Horticulture Research

Horticulture Research is an open access journal of Nanjing Agricultural University and ranked number one in the Horticulture category of the Journal Citation Reports ™ from Clarivate, 2022. The journal is committed to publishing original research articles, reviews, perspectives, comments, correspondence articles and letters to the editor related to all major horticultural plants and disciplines, including biotechnology, breeding, cellular and molecular biology, evolution, genetics, inter-species interactions, physiology, and the origination and domestication of crops.

Paper title: Pumpkin CmoDREB2A enhances salt tolerance of grafted cucumber through interaction with CmoNAC1 to regulate H2O2 and ABA signaling and K+/Na+ homeostasis
Attached files
  • The underlying mechanism of the interaction between CmoDREB2A and CmoNAC1 in regulating salt tolerance of grafted cucumbers. Both CmoDREB2A and CmoNAC1 are capable of binding to each other’s promoters. The transcriptional complexes formed by CmoDREB2A and CmoNAC1 not only enhance the binding affinity of CmoNAC1 to the CmoRBOHD1 and CmoNCED6 promoters, leading to increased production of H2O2 and ABA, but also facilitate the binding of CmoNAC1 to the CmoAKT1;2 and CmoHKT1;1 promoter and the binding of CmoDREB2A to the CmoHAK5;1 and CmoHAK5;2 promoter, thereby promoting K+/Na+ homeostasis.
21/06/2024 TranSpread
Regions: North America, United States, Asia, China
Keywords: Science, Agriculture & fishing

Testimonials

For well over a decade, in my capacity as a researcher, broadcaster, and producer, I have relied heavily on Alphagalileo.
All of my work trips have been planned around stories that I've found on this site.
The under embargo section allows us to plan ahead and the news releases enable us to find key experts.
Going through the tailored daily updates is the best way to start the day. It's such a critical service for me and many of my colleagues.
Koula Bouloukos, Senior manager, Editorial & Production Underknown
We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet

We Work Closely With...


  • BBC
  • The Times
  • National Geographic
  • The University of Edinburgh
  • University of Cambridge
Copyright 2024 by AlphaGalileo Terms Of Use Privacy Statement