Quadrupolar nuclei measured for the first time by zero-field NMR
en-GBde-DEes-ESfr-FR

Quadrupolar nuclei measured for the first time by zero-field NMR

11/07/2024 Universität Mainz

Researchers at Mainz University and the University of California, Berkeley, achieve a breakthrough in zero-field nuclear magnetic resonance spectroscopy, paving the way towards benchmarking quantum chemistry calculations

What is the structure of a particular molecule? And how do molecules interact with each other? Researchers interested in those questions frequently use nuclear magnetic resonance (NMR) spectroscopy to find answers. In NMR, a powerful external magnetic field is employed to align the spins of atomic nuclei, which are then induced to rotate by an oscillating weak magnetic field generated by coils. A change in voltage as a result can be converted to measurable frequencies. Based on this, researchers can identify the molecular structures while also revealing certain information about the nuclear spin interactions. However, this type of investigation requires very strong magnetic fields generated by massive devices, which are themselves difficult to install and to maintain. At the same time, even with such elaborate equipment it is still difficult to analyze quadrupolar nuclei, which are the most abundant type of nuclei in nature.

In the case of zero-field nuclear magnetic resonance (zero-field NMR), there is no need for a powerful external magnetic field. Here, the intramolecular couplings between the spins of magnetically active nuclei are the predominant quantum mechanical interaction. The spectral lines are thus narrower and sharper, and samples can even be investigated in containers made of metal or other materials. Zero-field NMR spectroscopy is now used to monitor reactions in metal containers or for the analysis of plants; it also has promising applications in medicine. However, to be able to measure the small interactions between the spins, it is necessary to provide shielding against the Earth's magnetic field, which is a complex undertaking in itself.

Simple yet more precise experimental setup

Researchers at Johannes Gutenberg University Mainz (JGU) and the Helmholtz Institute Mainz (HIM), collaborating with colleagues at the University of California, Berkeley, have recently managed to measure quadrupolar nuclei using zero-field NMR. "We analyzed an ammonium molecule, NH4+, a cation that plays an important role in various applications," said Dr. Danila Barskiy, head of the JGU team. "We hope that in future we will be able to detect these molecules even in complex environments, such as reactors and metal containers." The researchers were able to devise a system which simply involves mixing ammonium salts with water and adding various amounts of deuterium. The individual spectra were then recorded and analyzed. For this analysis, the scientists used a commercially available magnetometer – not bigger than a fingernail – in a home-built compact analytical system with magnetic shielding.

Precision measurements to test existing theories

The researchers also examined another interesting question: To what extent does the number of deuterium atoms in an ammonium molecule influence the spectrum and the relaxation characteristics of spins? As Román Picazo-Frutos, a student at the JGU Institute of Physics and lead author of the corresponding publication, pointed out: "Using our method, it is possible to determine resonance frequencies with a very high level of precision. Because the results produced by this technique can be compared with other experimental data, it can be used for benchmarking quantum chemistry calculations. We hope that our system will become standard practice in the near future." Although predictions based on current theories correlate closely with the results obtained by the team, there are small deviations. "The work undertaken by the team has considerably extended the range of molecules that can be analyzed by means of zero- to ultralow-field NMR techniques. It may even contribute to the development of innovative applications that could be used to investigate the nuclei of atoms with small atomic numbers by means of their radioactive gamma decay," concluded Professor Dmitry Budker of JGU.

The research results have been published in Nature Communications.


Related links:
Read more:
R. Picazo-Frutos et al., Zero-field J-spectroscopy of quadrupolar nuclei, Nature Communications, 27 May 2024,
DOI: 10.1038/s41467-024-48390-2
https://www.nature.com/articles/s41467-024-48390-2
Attached files
  • NMR tubes containing liquids (photo/©: Oleg Tretiak)
11/07/2024 Universität Mainz
Regions: Europe, Germany, North America, United States
Keywords: Science, Chemistry, Physics, Business, Universities & research, Applied science, Technology

Disclaimer: AlphaGalileo is not responsible for the accuracy of news releases posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Testimonials

For well over a decade, in my capacity as a researcher, broadcaster, and producer, I have relied heavily on Alphagalileo.
All of my work trips have been planned around stories that I've found on this site.
The under embargo section allows us to plan ahead and the news releases enable us to find key experts.
Going through the tailored daily updates is the best way to start the day. It's such a critical service for me and many of my colleagues.
Koula Bouloukos, Senior manager, Editorial & Production Underknown
We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet

We Work Closely With...


  • BBC
  • The Times
  • National Geographic
  • The University of Edinburgh
  • University of Cambridge
  • iesResearch
Copyright 2024 by AlphaGalileo Terms Of Use Privacy Statement