Phytic acid-based nanomedicine against mTOR for metabolic dysfunction-associated steatohepatitis therapy
en-GBde-DEes-ESfr-FR

Phytic acid-based nanomedicine against mTOR for metabolic dysfunction-associated steatohepatitis therapy

16/07/2024 Frontiers Journals

Metabolic dysfunction-associated steatohepatitis (MASH) is one of the most common chronic liver diseases, primarily caused by metabolic disorders and systemic inflammatory responses. Although the incidence of MASH is gradually increasing, there is a lack of effective drugs and methods for its treatment, thus limiting therapeutic options for MASH. Professor Liu Lei's team has long focused on the treatment and molecular mechanisms of liver-related diseases. Due to cerium's significant antioxidant and anti-inflammatory activities, as well as its hepatophilicity and good biosafety, it shows great potential in liver disease treatment. The researchers first utilized the metal coordination function of the phytic acid (PA) molecule to design and synthesize a cerium-phytic acid (CePA) complex. Compared to PA, the resulting CePA has greater stability and antioxidant activity, providing more stable and effective protection against liver lipid damage. The researchers subsequently validated CePA's high efficiency and safe mTOR inhibition capacity through molecular docking, cell experiments, and MASH animal models, indicating its potentially important role in MASH treatment.
Recently, the Liu Lei/Zhao Junlong team from Air Force Medical University and the Qu Yongquan/Tian Zhimin team from Northwestern Polytechnical University published a research paper titled "Phytic acid-based nanomedicine against mTOR represses lipogenesis and immune response for metabolic dysfunction-associated steatohepatitis therapy" in the journal Life Metabolism. The study synthesized a CePA complex by combining PA with cerium ions, which possess phosphodiesterase activity. The research focused on how CePA intervenes in the phosphorylation of mTOR through the occupying effect of phosphate groups and improves inflammatory response and lipid metabolism disorders via the mTOR/AKT regulatory axis. The results showed that CePA significantly alleviated the progression of MASH and fat accumulation in mice fed with a high-sugar, high-fat (HFCFG) diet, demonstrating liver-targeted mTOR inhibition. This provides a valuable research direction for the treatment of MASH and other mTOR-related diseases (Figure 1).
The functional changes of CePA on cell metabolic activity and fatty acid oxidation were determined by human primary hepatocytes and mouse normal hepatocytes. The experiments showed that CePA could inhibit lipid metabolism in hepatocytes by blocking phosphorylation and inhibiting the mTOR signaling pathway. Further studies showed that CePA could improve the activation and infiltration of liver macrophages during the occurrence and development of MASH, and CePA could effectively inhibit the phagocytosis of F4/80 labeled macrophages and improve the polarization of macrophages by inhibiting the activation of mTOR.
In vivo experiments, the MASH model of an HFCFG diet fed for 16 weeks and the intervention model of an HFCFG diet fed with 1% CePA were established. By measuring the concentrations of alanine transaminase (ALT), aspartate transaminase (AST), and cholesterol (CHO) in mouse serum, it was found that CePA can treat metabolic liver disease and metabolic syndrome more effectively (Figure 2). In addition, through morphological analysis and lipid synthesis and lipid metabolism gene detection, CePA was found to protect HFCFG-induced MASH by regulating lipid droplet accumulation and lipid deposition in liver tissue and liver fibrosis. At the same time, CePA can significantly inhibit the recruitment and infiltration of macrophages induced by HFCFG, and improve the liver inflammatory response during MASH by reducing the M1 polarization of macrophages, suggesting that CePA has a therapeutic effect on MASH, and CePA may exert the above effect by affecting the phosphorylation level of mTOR (Figure 2).
Finally, in order to further explore the mechanism by which CePA protects MASH by affecting the phosphorylation of mTOR, the researchers conducted RNA sequencing on liver tissues, and in-depth screening analysis found that CePA could inhibit the mTORC1 signaling pathway (Figure 3). To better verify that CePA can induce molecular changes dependent on inhibition of mTOR phosphorylation level, they performed quantitative phosphorylation proteomic analysis based on mass spectrometry to comprehensively determine phosphorylation and dephosphorylation sites after CePA treatment, and found that the phosphorylation level of mTOR signaling protein decreased after CePA treatment (Figure 3).
Overall, the study demonstrated in vitro and in vivo that CePA can spatially block the phosphorylation and activation of mTOR to reduce hepatic steatosis, lipid-related damage, and fibrosis of MASH in vivo and in vitro. Further targeted regulation of various chemical modifications of hepatocytes provides a new idea and an important basis for more accurate and flexible treatment of liver diseases.
DOI:10.1093/lifemeta/loae026
Attached files
  • Figure 1 CePA exerts a liver-targeted mTOR repressive function, alleviating MASH progression and fat accumulation in high-fat diet-fed mice.
  • Figure 2 CePA regulates metabolic disorders in vivo.
  • Figure 3 Bioinformatic analysis of the regulatory effect of CePA.
16/07/2024 Frontiers Journals
Regions: Asia, China
Keywords: Health, Medical

Disclaimer: AlphaGalileo is not responsible for the accuracy of news releases posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Testimonials

For well over a decade, in my capacity as a researcher, broadcaster, and producer, I have relied heavily on Alphagalileo.
All of my work trips have been planned around stories that I've found on this site.
The under embargo section allows us to plan ahead and the news releases enable us to find key experts.
Going through the tailored daily updates is the best way to start the day. It's such a critical service for me and many of my colleagues.
Koula Bouloukos, Senior manager, Editorial & Production Underknown
We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet

We Work Closely With...


  • BBC
  • The Times
  • National Geographic
  • The University of Edinburgh
  • University of Cambridge
  • iesResearch
Copyright 2024 by AlphaGalileo Terms Of Use Privacy Statement