Peeling back the genetic layers of stone fruit domestication
en-GBde-DEes-ESfr-FR

Peeling back the genetic layers of stone fruit domestication

18/07/2024 TranSpread

The Prunus genus, encompassing apricots, peaches, plums, and mei, is vital due to its economic and nutritional value. However, the genetic foundations of these species' shared and unique traits remain largely unexplored. This knowledge gap hinders advancements in breeding programs aimed at improving fruit quality and stress tolerance. Addressing these issues is crucial for sustainable cultivation and enhancing crop resilience to environmental challenges. Based on these challenges, it is essential to conduct in-depth research to uncover the genetic diversity and evolutionary history of Prunus species.

A team of researchers from several institutions in China, including Guizhou University and the Chinese Academy of Agricultural Sciences, published a study (DOI: 10.1093/hr/uhae109) on April 16, 2024, in the journal Horticulture Research. The study focuses on the comparative population genomics of the apricot-peach-plum-mei (APPM) complex, utilizing advanced genomic technologies to reveal insights into the evolutionary history and domestication of these species.

The research team successfully generated a high-quality, haplotype-resolved telomere-to-telomere (T2T) reference genome for a plum cultivar. This comprehensive genome assembly facilitated comparative genomic analyses across the APPM complex. One key discovery was a significant chromosomal translocation in the apricot genome, affecting important traits like acidity and sugar content. Additionally, population genetic analyses revealed substantial gene flow between plum and apricot, with introgression regions linked to post-embryonic development and pollen germination. The study identified both shared and unique genes among the four species, providing insights into the evolutionary pressures shaping these crops. By highlighting convergent and divergent selection signals, the research offers a deeper understanding of the genetic mechanisms underlying key agronomic traits, which is essential for advancing Prunus breeding programs and improving fruit quality and resilience.

Dr. Yongfeng Zhou, one of the lead authors, stated, "Our findings provide valuable insights into the genetic diversity and evolutionary mechanisms of the Prunus species. This knowledge will significantly contribute to the genetic improvement and sustainable cultivation of these economically important fruit crops."

The insights gained from this study have important implications for the breeding and genetic improvement of Prunus species. By understanding the genomic regions and genes involved in key traits, breeders can develop new varieties with improved qualities such as better taste, increased stress tolerance, and higher yields. This research also lays the groundwork for future studies on the genetic basis of adaptation and domestication in fruit crops.

###

References

DOI

10.1093/hr/uhae109

Original Source URL

https://doi.org/10.1093/hr/uhae109

Funding information

This work was financially supported by the Guizhou Provincial Science and Technology Projects of China ([2022]Zhongdian018, YQK[2023]008), the National Guidance Foundation for Local Science and Technology Development of China (Grant No. 2023-009), and the Science Fund Program for Distinguished Young Scholars of the National Natural Science Foundation of China (Overseas) to Yongfeng Zhou.

About Horticulture Research

Horticulture Research is an open access journal of Nanjing Agricultural University and ranked number one in the Horticulture category of the Journal Citation Reports ™ from Clarivate, 2022. The journal is committed to publishing original research articles, reviews, perspectives, comments, correspondence articles and letters to the editor related to all major horticultural plants and disciplines, including biotechnology, breeding, cellular and molecular biology, evolution, genetics, inter-species interactions, physiology, and the origination and domestication of crops.

Paper title: Comparative population genomics reveals convergent and divergent selection in the apricot–peach–plum–mei complex
Attached files
  • Overview of the PS_T2T reference genome. A–C The pictures used in this study show the tree, fruits, and flowers of the ‘Fengtangli’ plum. D Overview of genome assembly. Collinearity between ‘Sanyueli’ and two haplotypes of PS_T2T. Gray lines represent collinearity blocks with length 15 000 bp, while orange lines represent potential inversions. Centromeres and telomeres are indicated by black boxes and black dots, respectively. E Hi-C interaction matrix based on the PS_T2T diploid assembly.
18/07/2024 TranSpread
Regions: North America, United States, Asia, China
Keywords: Science, Agriculture & fishing

Testimonials

For well over a decade, in my capacity as a researcher, broadcaster, and producer, I have relied heavily on Alphagalileo.
All of my work trips have been planned around stories that I've found on this site.
The under embargo section allows us to plan ahead and the news releases enable us to find key experts.
Going through the tailored daily updates is the best way to start the day. It's such a critical service for me and many of my colleagues.
Koula Bouloukos, Senior manager, Editorial & Production Underknown
We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet

We Work Closely With...


  • BBC
  • The Times
  • National Geographic
  • The University of Edinburgh
  • University of Cambridge
  • iesResearch
Copyright 2024 by AlphaGalileo Terms Of Use Privacy Statement