CeO2 nanoparticles: a double-edged sword for aquatic algal life
en-GBde-DEes-ESfr-FR

CeO2 nanoparticles: a double-edged sword for aquatic algal life

22/08/2024 TranSpread

A crucial study reveals significant alterations in growth, photosynthetic activity, and gene expression of freshwater algae due to cerium oxide nanoparticles. This research highlights the complex interactions between these microscopic pollutants and key aquatic producers, providing essential insights into the ecological impacts of nanomaterial pollution.

As nanotechnology progresses, the pervasive use of cerium oxide nanoparticles in various industrial applications has led to their frequent dispersal into aquatic environments. These particles have become a routine element of industrial waste, interfacing with vital aquatic organisms like algae. With increasing concerns over their effects on aquatic health and ecosystem stability, urgent and comprehensive research is needed to address the environmental threats posed by these nanoparticles.

Executed by the team from the State Key Laboratory of Biocontrol and the Guangdong Provincial Key Laboratory of Plant Resources at Sun Yat-sen University's Shenzhen Campus, this study (DOI: 10.1016/j.eehl.2024.04.002) was published in the journal Eco-Environment & Health on 16 April 2024. It delves into the effects of repeated exposure to cerium oxide nanoparticles on the freshwater algae Chlorella vulgaris.

Considering that the exposure period of nanoparticles is deeply connected with the physiological rhythms of the exposed organisms. This research investigated the effects of CeO2 nanoparticles on Chlorella vulgaris in single and repeated sessions. Results indicate that repeated exposures markedly increase the algae's photosynthetic pigment content and oxidative stress levels, suggesting an intensified response to environmental stressors. Additionally, these exposures decreased photosynthetic efficiency and reduced biomass, adversely affecting the alga's health and growth. Gene expression analysis showed a significant upregulation in photosynthesis-related genes, indicating an adaptive response to nanoparticle-induced stress. The findings underscore the complex effects of nanoparticles on aquatic life, highlighting the potential long-term ecological consequences of repeated nanoparticle exposures.

Professor Huang, the lead researcher on this project, states, "This study underscores the potential dangers of repeated nanoparticle exposure to algae, stressing the importance of evaluating nanomaterial risks in actual environmental settings. Our findings lay a scientific foundation for mitigating potential ecological risks associated with nanomaterials."

Understanding the impact of repeated CeO2 nanoparticle exposure on algal photosynthesis and growth is crucial for assessing the environmental risks posed by these materials. This knowledge can help in developing safer nanotechnology applications and inform environmental policy making, ensuring that the advancement of nanotechnologies aligns with environmental conservation goals.

###

References

DOI

10.1016/j.eehl.2024.04.002

Original Source URL

https://doi.org/10.1016/j.eehl.2024.04.002

Funding information

Funding for this work was provided by grants from the National Natural Science Foundation of China (42007285), Shenzhen Science and Technology Program (Grant Nos. RCBS20210706092344024 and 202206193000001, 20220816102553004), Basic and Applied Basic Research Foundation of Guangdong Province (No. 2023A1515010564).

About Eco-Environment & Health

Eco-Environment & Health (EEH) is an international and multidisciplinary peer-reviewed journal designed for publications on the frontiers of the ecology, environment and health as well as their related disciplines. EEH focuses on the concept of "One Health" to promote green and sustainable development, dealing with the interactions among ecology, environment and health, and the underlying mechanisms and interventions. Our mission is to be one of the most important flagship journals in the field of environmental health.

Paper title: Repeated release of cerium oxide nanoparticles altered algal responses: Growth, photosynthesis, and photosynthetic gene expression
Attached files
  • Impact of Repeated CeO2 Nanoparticle Exposure on Algal Photosynthesis and Biomass.
22/08/2024 TranSpread
Regions: North America, United States, Asia, China
Keywords: Science, Environment - science, Health, Environmental health

Disclaimer: AlphaGalileo is not responsible for the accuracy of news releases posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Testimonials

For well over a decade, in my capacity as a researcher, broadcaster, and producer, I have relied heavily on Alphagalileo.
All of my work trips have been planned around stories that I've found on this site.
The under embargo section allows us to plan ahead and the news releases enable us to find key experts.
Going through the tailored daily updates is the best way to start the day. It's such a critical service for me and many of my colleagues.
Koula Bouloukos, Senior manager, Editorial & Production Underknown
We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet

We Work Closely With...


  • BBC
  • The Times
  • National Geographic
  • The University of Edinburgh
  • University of Cambridge
  • iesResearch
Copyright 2024 by AlphaGalileo Terms Of Use Privacy Statement