New data on radiation allows missions to Jupiter's moon Europa
en-GBde-DEes-ESfr-FR

New data on radiation allows missions to Jupiter's moon Europa


Scientists on NASA's Juno mission have used images from stellar cameras to map high-energy radiation at Jupiter's moon Europa and find surprisingly low radiation on the side facing away from the moon's direction of movement.

Scientists from NASA’s Juno mission have developed the first complete 3D radiation map of the Jupiter system, including characterizing the intensity of the high-energy particles near the orbit of the icy moon Europa, and how the radiation environment is sculpted by the smaller Jovian moons orbiting near Jupiter’s rings. The work relies on data collected by Juno’s star camera Advanced Stellar Compass (ASC) designed and built by Technical University of Denmark, and Stellar Reference Unit (SRU), which was built by Leonardo, S.p.A. in Florence, Italy. The two datasets complement one another, helping Juno scientists characterize the radiation environment at different energies.

Both ASC and SRU are low-light cameras designed to assist in the challenges of deep-space navigation. These types of instruments are on almost all interplanetary and Earth-orbiting spacecraft. To get them to operate as radiation detectors, the Juno science team had to look at the cameras in a whole new light.

“On Juno we try to innovate new ways to use our sensors to learn about nature and have used many of our science instruments in ways they were not designed for,” said Scott Bolton, Juno principal investigator from the Southwest Research Institute in San Antonio.

“This is the first detailed radiation map of the region at these higher energies, which is a major step in understanding how Jupiter’s radiation environment works. That we've been able to create the first detailed map of the region is a big deal, because we don't carry an instrument designed to look for radiation. The map will help planning observations for the next generation of missions to the Jovian system,” says Scott Bolton.

Counting fireflies

Juno's ASC star camera images of stars to determine the spacecraft's orientation in space, which is vital to the success of the spacecraft’s MAG experiment. But the four star cameras - located on Juno's magnetometer boom - have also proved to be valuable detectors of high-energy particles fluxes in Jupiter’s magnetosphere. They record “hard radiation” — ionizing radiation of high-penetrating power that impacts a spacecraft with sufficient energy to pass through the ASC star camera’s shielding.

“Every quarter-second the ASC takes an image of the stars,” said Juno scientist John Leif Jørgensen, professor at the Technical University of Denmark.

“Very energetic electrons that penetrate its shielding leave a telltale signature in our images that looks like the trail of a firefly. The instrument is programmed to count the number of these fireflies, giving us an accurate calculation of the amount of radiation,” says John Leif Jørgensen.

Because of Juno’s ever-changing orbit, the spacecraft has traversed practically all regions of space near Jupiter.

ASC data from the star camera suggest that there is more very high energy radiation relative to lower energy radiation near the moon Europa’s orbit than previously thought. The data also confirms that the amount of high energy electrons present on the side of the Europa facing into its orbital direction of motion is greater than the moon’s slipstream. This is due to the fact that most of the electrons in Jupiter’s magnetosphere overtake Europa from behind due to Jupiter and its magnetic field rotation, but the very high energy electrons drift backwards, almost like fish swimming upstream, and they slam into Europa’s leading side.

The radiation data from the Jupiter system is not the first unplanned scientific contribution ASC has made to the mission. Even before arriving at Jupiter, ASC data was used to measure the interplanetary dust impacting Juno. And the imager even discovered a previously uncharted comet using the same dust detection technique – distinguishing small bits of the spacecraft ejected by microscopic dust impacting Juno at very high velocity.

The results from the Juno mission are in the final round of peer review and will be published in the scientific journal Geophysical Research Letters.

Dust Rings

Like the ASC the SRU has been utilized as a radiation detector and a low light imager.

Data from Juno’s SRU and ASC indicate that like Europa, the small “shepherd moons” that orbit within or close to the edge of Jupiter’s rings (and help to hold their shape) also appear to interact with Jupiter’s radiation environment. When the spacecraft flies on magnetic field lines connected to ring moons or dense dust, the radiation count on both ASC and SRU dropped precipitously. The SRU is also collecting rare low light images of the rings from Juno’s unique vantage point.

“There is still a lot of mystery about how Jupiter’s rings were formed, and very few images have been collected by prior spacecraft,” said Heidi Becker, lead co-investigator for the SRU and a scientist at NASA’s Jet Propulsion Laboratory, which manages the mission. “Sometimes we’re lucky and one of the small shepherd moons can be captured in the shot. These images allow us to learn more precisely where the ring moons are currently located and see the distribution of dust relative to its distance from Jupiter.”

Facts

NASA's Juno mission

The Jet Propulsion Laboratory (JPL), a division of NASA in Pasadena, California, manages the Juno mission, which is part of NASA's New Frontiers Program. Astrophysicist Scott Bolton of the Southwest Research Institute in San Antonio has overall scientific responsibility for the mission. The Juno spacecraft itself is built and operated by Lockheed Martin Space in Denver, while several of the instruments are built by universities around the world - including at the Technical University of Denmark.

Read more about NASA's Juno mission.

Attached files
  • This artist concept depicts the Juno spacecraft which arrived at Jupiter in 2016 after a five-year journey to study the giant planet. Illustration: NASA Jet Propulsion Laboratory, JPL.
Regions: Europe, Denmark, Italy, Extraterrestrial, Jupiter, Moon
Keywords: Science, Space Science, Applied science, Technology

Disclaimer: AlphaGalileo is not responsible for the accuracy of news releases posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Testimonials

For well over a decade, in my capacity as a researcher, broadcaster, and producer, I have relied heavily on Alphagalileo.
All of my work trips have been planned around stories that I've found on this site.
The under embargo section allows us to plan ahead and the news releases enable us to find key experts.
Going through the tailored daily updates is the best way to start the day. It's such a critical service for me and many of my colleagues.
Koula Bouloukos, Senior manager, Editorial & Production Underknown
We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet

We Work Closely With...


  • BBC
  • The Times
  • National Geographic
  • The University of Edinburgh
  • University of Cambridge
  • iesResearch
Copyright 2024 by AlphaGalileo Terms Of Use Privacy Statement