Researchers develop new implant to power healing after spinal cord injury
en-GBde-DEes-ESfr-FR

Researchers develop new implant to power healing after spinal cord injury


A research team at RCSI University of Medicine and Health Sciences has developed a new implant that conveys electrical signals and may have potential to encourage nerve cell (neuron) repair after spinal cord injury.
Details of the implant and how it performs in lab experiments have just been published in the journal Materials Today.
“To date, it has been extremely difficult to promote the regrowth of neurons after spinal cord injury which is a major obstacle in the development of successful treatments for such debilitating injuries,” explains Professor Fergal O’Brien, Deputy Vice Chancelllor for Research and Innovation and Professor of Bioengineering and Regenerative Medicine at RCSI and Head of RCSI’s Tissue Engineering Research Group (TERG). “Our research here represents a promising new approach which may have potential for the treatment of spinal cord injuries.”
Spinal cord injury is a devastating and often paralysing condition. One person suffers a spinal cord injury every week in Ireland, and there are over 2,300 individuals and families are living with spinal cord injury across Ireland. After injury, the long axonal projections of nerve cells are cut and “die-back” from the injury site, and at the same time a lesion or gap forms at the wound site that prevents their regrowth necessary to restore function.
To address this complex problem, the research team at RCSI’s TERG and the SFI Advanced Materials and Bioengineering Research (AMBER) Centre at Trinity College Dublin developed an implantable, electroconductive 3D-printed scaffold that can be placed directly into the injury site, bridging the gap.
Professor O’Brien, who is also Deputy Director of AMBER sees the implant as a new approach “Bridging the lesion with an electroconductive biomaterial designed to mimic the structure of the spinal cord, combined with the application of electrical stimulation, may help injured neurons regrow their axons and reconnect to restore function,” he said, adding that “No such platform exists to date.”
When electrical stimulation is applied to the implant, it can convey that electrical signal to boost the regrowth of the injured axons. At the same time, the scaffolding and channels of the implant are designed to act as a bridge and direct the axons grow back in the correct formation.
When the researchers put the implant to the test in the lab, they saw promising results.
“We could see that when we applied electrical stimulation for a week to neurons growing on this scaffold, they developed long healthy extensions called neurites. In the body, this kind of growth would be a key step towards repair and recovery after an injury,” said Liam Leahy, first author of the study and a PhD candidate at RCSI.
The RCSI and AMBER researchers teamed up with the Irish Rugby Football Union Charitable Trust (IRFU-CT) on the project and brought together a spinal cord injury advisory group to oversee and guide the research. That group included clinicians, individuals living with spinal cord injury and Public and Patient Involvement (PPI) researchers.
“This advisory group provided valuable insight into the realities of spinal cord injuries and potential treatment strategies,” says Leahy. Through regular meetings as well as laboratory visits, the advisory group helped guide the work from its inception to the current publication and led to two separate publications on the role of Public and Patient Involvement in preclinical research.”
The implant project was supported by the Irish Rugby Football Union Charitable Trust, the Science Foundation Ireland Advanced Materials and Bioengineering Research (AMBER) Centre, the Irish Research Council and the research findings were recently presented at the TERMIS World Congress in Seattle, Washington, USA.
Regions: Europe, Ireland
Keywords: Health, Medical, Science, Life Sciences

Disclaimer: AlphaGalileo is not responsible for the accuracy of news releases posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Testimonials

For well over a decade, in my capacity as a researcher, broadcaster, and producer, I have relied heavily on Alphagalileo.
All of my work trips have been planned around stories that I've found on this site.
The under embargo section allows us to plan ahead and the news releases enable us to find key experts.
Going through the tailored daily updates is the best way to start the day. It's such a critical service for me and many of my colleagues.
Koula Bouloukos, Senior manager, Editorial & Production Underknown
We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet

We Work Closely With...


  • BBC
  • The Times
  • National Geographic
  • The University of Edinburgh
  • University of Cambridge
  • iesResearch
Copyright 2024 by AlphaGalileo Terms Of Use Privacy Statement