Improvement of durability of membrane electrode assembly by frame sealing structure in temperature shock
en-GBde-DEes-ESfr-FR

Improvement of durability of membrane electrode assembly by frame sealing structure in temperature shock

29/08/2024 Frontiers Journals

Fuel cells offer a promising solution for clean energy with advantages over traditional electric power systems, including extended driving range and higher energy density. Despite these benefits, the high costs and durability concerns associated with fuel cell stacks have limited their commercialization. The durability of membrane electrode assemblies (MEAs), a key component of proton exchange membrane fuel cells (PEMFCs), is particularly affected by the frame sealing structure, which is often overlooked in research.
The study, conducted by Tiankuo Chu and Yanbo Wang from Tongji University and the National Center of Technology Innovation for Fuel Cell (China), investigates the effects of different frame sealing structures on MEA durability. The researchers applied a thermal shock bench test as an accelerated aging method to simulate the impact of frequent temperature changes on MEA durability.
The results revealed that thermal shock leads to the formation of cracks in the proton exchange membrane (PEM) at the gap between the frame and the active area, as well as damage to the bonding interface between the frame and the membrane. This damage increases the risk of reactant gas crossover, a critical issue for fuel cell performance. The study compared single-layer and improved double-layer frame structures and found that the addition of a cushion layer in the double-layer frame enhances continuity and reduces membrane deformation, thereby preventing damage.
This research provides valuable insights into the design of MEAs, emphasizing the importance of frame sealing structures in improving the durability and performance of PEMFCs. By understanding the mechanisms of mechanical attenuation at the frame and evaluating the effectiveness of improved frame structures, the study contributes to the development of more reliable and long-lasting fuel cell systems. The findings are crucial for achieving the 5000-hour durability goal for fuel cells, bringing the commercialization of fuel cell vehicles closer to reality.
DOI: 10.1007/s11708-024-0955-3
Attached files
  • IMAGE: Cross-sectional representation of fuel cell frame structureCREDIT: HIGHER EDUCATION PRESS
29/08/2024 Frontiers Journals
Regions: Asia, China
Keywords: Science, Energy

Disclaimer: AlphaGalileo is not responsible for the accuracy of news releases posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Testimonials

For well over a decade, in my capacity as a researcher, broadcaster, and producer, I have relied heavily on Alphagalileo.
All of my work trips have been planned around stories that I've found on this site.
The under embargo section allows us to plan ahead and the news releases enable us to find key experts.
Going through the tailored daily updates is the best way to start the day. It's such a critical service for me and many of my colleagues.
Koula Bouloukos, Senior manager, Editorial & Production Underknown
We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet

We Work Closely With...


  • BBC
  • The Times
  • National Geographic
  • The University of Edinburgh
  • University of Cambridge
  • iesResearch
Copyright 2024 by AlphaGalileo Terms Of Use Privacy Statement