Insulin cells don’t need to team up
en-GBde-DEes-ESfr-FR

Insulin cells don’t need to team up


Our glycaemic balance is based on the ability of the pancreatic beta cells to detect glucose and secrete insulin to maintain our blood sugar levels. If these cells malfunction, the balance is broken, and diabetes develops. Until now, the scientific community agreed that beta cells needed the other hormone-producing cells of the pancreas to function properly. A team from the University of Geneva (UNIGE) has demonstrated the opposite: in adult mice whose pancreas contains only beta cells, glycaemia regulation and insulin sensitivity are even better than in standard animals. These results, which open major clinical prospects, can be read in the journal Nature Metabolism.

In 2010, the team led by Pedro Herrera, a professor in the Department of Genetic Medicine and Development and in the Diabetes Centre at the UNIGE Faculty of Medicine, discovered the remarkable ability of pancreatic cells to change function. If beta cells die prematurely, the endocrine cells normally responsible for producing other hormones, such as glucagon or somatostatin, can start producing insulin.

‘‘Until now, it was thought that the differentiated adult cells of an organism could not regenerate and reorientate themselves functionally. Pharmacologically triggering this cellular plasticity could therefore form the basis of an entirely new therapy for diabetes. But what happens if all the cells of the endocrine pancreas abandon their original function to start producing insulin? It is what we wanted to find out in our new study,’’ explains Pedro Herrera.

Non-beta cells are not essential

It was accepted that beta cells could only function correctly in the presence of the other hormone-producing cells – alpha, delta and gamma cells – grouped together in islets within the pancreas. ‘‘To verify this, we produced mice in which, when they reach adulthood, all the non-beta cells in the pancreas can be selectively eliminated to observe how the beta cells manage to regulate glycaemia,’’ explains Marta Perez Frances, a researcher in Pedro Herrera’s laboratory and first author of this work. ‘‘Surprisingly, not only were our mice perfectly capable of managing their blood sugar levels effectively, but they were even healthier than the control mice!”

Even when fed a high-fat diet or tested for resistance to insulin – one of the main markers of diabetes – these mice showed improved sensitivity to insulin in all the target tissues, and particularly in adipose tissue. Why? “There is an adaptation process in which the body recruits other hormonal cells from outside the pancreas to cope with the sudden reduction in glucagon and other pancreatic hormones,’’ notes Pedro Herrera. ‘‘But this clearly shows that non-beta cells of the pancreatic islets are not essential for maintaining glycaemic balance.’’ These results are surprising and challenge the prevailing conception up until now.

Emerging new therapies

Naturally, around 2% of pancreatic cells change their function in the event of insulin deficiency. The challenge is now to identify a molecule capable of inducing and amplifying this conversion. Another strategy would be to differentiate stem cells in vitro to produce new beta cells before transplanting them into the patients. ‘‘Our results are proof that strategies focusing on insulin cells could really pay off,’’ enthuses Pedro Herrera. ‘‘The next stage of our work will therefore involve establishing the molecular and epigenetic profile of non-beta cells from diabetic and non-diabetic individuals in the hope of identifying the elements which could make it possible to induce the conversion of these cells in the pathological context of diabetes.’’

"Regulated and adaptive in vivo insulin secretion from islets only containing β-cells"
Marta Perez-Frances, Eva Bru-Tari, Christian Cohrs, Maria Valentina Abate, Léon van Gurp, Kenichiro Furuyama, Stephan Speier, Fabrizio Thorel & Pedro L. Herrera
Nature Metabolism
10.1038/s42255-024-01114-8
Attached files
  • Pancreatic islets from adult mice. On the left, islet composed of different types of endocrine cells. Right: pancreatic islet composed solely of beta cells. © Laboratoire Pedro Herrera – UNIGE
Regions: Europe, Switzerland
Keywords: Health, Medical

Disclaimer: AlphaGalileo is not responsible for the accuracy of news releases posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Testimonials

For well over a decade, in my capacity as a researcher, broadcaster, and producer, I have relied heavily on Alphagalileo.
All of my work trips have been planned around stories that I've found on this site.
The under embargo section allows us to plan ahead and the news releases enable us to find key experts.
Going through the tailored daily updates is the best way to start the day. It's such a critical service for me and many of my colleagues.
Koula Bouloukos, Senior manager, Editorial & Production Underknown
We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet

We Work Closely With...


  • BBC
  • The Times
  • National Geographic
  • The University of Edinburgh
  • University of Cambridge
  • iesResearch
Copyright 2024 by AlphaGalileo Terms Of Use Privacy Statement