Arbitrarily rotating polarization direction and manipulating phases in linear and nonlinear ways using programmable metasurface
en-GBde-DEes-ESfr-FR

Arbitrarily rotating polarization direction and manipulating phases in linear and nonlinear ways using programmable metasurface

02/09/2024 TranSpread

Independent manipulations of various properties of EM waves are crucially required in a wide range of applications. Metasurface is a promising candidate to provide an advanced platform for manipulating EM waves. In 2014, the concepts of digital coding metasurfaces and programmable metasurfaces were first put forward, effectively integrating metasurfaces technology with information technology. This greatly simplified the design process of metasurfaces and laid the foundations for their development and application in radar systems, wireless communication, and EM imaging. Recently, time-domain digital-coding metasurfaces and STC metasurfaces have been proposed, enabling simultaneous manipulation of EM waves in both time and space dimensions, significantly extending their research directions and application. As the investigation moved forward, metasurfaces capable of controlling EM waves in multiple dimensions have gradually become a development trend. However, the existing research remains lack the dimension of polarization manipulation.

In a new paper (https://doi.org/10.1038/s41377-024-01513-2) published in Light Science & Applications, the team of the Professor Tiejun Cui from the State Key Laboratory of Millimeter Waves, Southeast University, China have proposed an approach that can arbitrarily control the polarization direction and phases of reflected waves in linear and nonlinear ways using a stacked programmable metasurface. Significantly, they achieved a high polarization rotation range covering the entire azimuthal angles, with a theoretical conversion efficiency of 100% for arbitrary polarization directions. Further, by extending the STC theory to incorporate the dimension of polarization, they proposed the concept and general theory of STPC metasurface, enhancing the capability to control polarization compared to STC metasurfaces. This provides an extra degree of freedom for manipulating EM waves and significantly expands the range of applications for metarsurfaces. As proof-of-principle application examples, they achieved polarization rotation, phase manipulation, and beam steering at linear and nonlinear frequencies. The proposed approach paves the way for multi-dimensional manipulation of EM waves and has a wide range of applications in various areas, such as imaging, data storage, and wireless communication.

The STPC metasurface composed of two substructure units with different transmission/reflection characteristics was designed to be stacked vertically. By separately modulating the control voltage of varactor diodes oriented at the x- and y-directions, they achieved a high polarization rotation range covering the entire azimuthal angles at linear and nonlinear frequency, as well as adjustable phase. These scientists summarize the operational principle of their STPC metasurface:

“The Jones matrix of the STPC metasurface's reflection characteristics is the product of the Jones matrices of the two substructures' transmission/reflection characteristics. The polarization and phase are controlled through voltages in two orthogonal directions. The simultaneous modulations of the beam and polarization direction of the fundamental wave are achieved using the space-polarization-coding scheme. In addition, simultaneous modulations of the beam and polarization direction of the nonlinear harmonics are achieved using the STPC scheme.”

“Compared to STC metasurface, the STPC metasurface adds the functionality of arbitrarily controlling polarization direction, which provides an extra degree of freedom for manipulating EM waves and significantly expands the range of applications for metarsurfaces. Our approach opens new avenues for the multidimensional manipulation of EM waves. Although the designed STPC metasurface operates in the microwave band, the proposed concept can be extended into terahertz and even optical domains, which have promising applications in radar, imaging, and wireless communications.” they added.

###

References

DOI

10.1038/s41377-024-01513-2

Original Source URL

https://doi.org/10.1038/s41377-024-01513-2

Funding information

This work is supported by the National Key Research and Development Program of China (2023YFB3811502, 2018YFA0701904), the National Science Foundation (NSFC) for Distinguished Young Scholars of China (62225108), the National Natural Science Foundation of China (62288101, 62201139, U22A2001), the Program of Song Shan Laboratory (Included in the management of Major Science and Technology Program of Henan Province) (221100211300-02, 221100211300-03), the 111 Project (111-2-05), the Jiangsu Province Frontier Leading Technology Basic Research Project (BK20212002), the Fundamental Research Funds for the Central Universities (2242022k60003, 2242024RCB0005), and the Southeast University-China Mobile Research Institute Joint Innovation Center (R202111101112JZC02).

About Light: Science & Applications

The Light: Science & Applications will primarily publish new research results in cutting-edge and emerging topics in optics and photonics, as well as covering traditional topics in optical engineering. The journal will publish original articles and reviews that are of high quality, high interest and far-reaching consequence.

Paper title: Arbitrarily rotating polarization direction and manipulating phases in linear and nonlinear ways using programmable metasurface
Attached files
  • The normalized far-field scattering patterns under y-polarized wave excitations. The simulated normalized 3D scattering patterns of (a) 0°-, (b) 45°-, (c) 90°-polarized reflection at 3.5 GHz.
  • 2D STPC matrices and measured normalized far-field scattering patterns.
02/09/2024 TranSpread
Regions: North America, United States, Asia, China
Keywords: Science, Physics

Disclaimer: AlphaGalileo is not responsible for the accuracy of news releases posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Testimonials

For well over a decade, in my capacity as a researcher, broadcaster, and producer, I have relied heavily on Alphagalileo.
All of my work trips have been planned around stories that I've found on this site.
The under embargo section allows us to plan ahead and the news releases enable us to find key experts.
Going through the tailored daily updates is the best way to start the day. It's such a critical service for me and many of my colleagues.
Koula Bouloukos, Senior manager, Editorial & Production Underknown
We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet

We Work Closely With...


  • BBC
  • The Times
  • National Geographic
  • The University of Edinburgh
  • University of Cambridge
  • iesResearch
Copyright 2024 by AlphaGalileo Terms Of Use Privacy Statement