Revitalizing pak choi: unveiling the genetic mechanisms behind drought tolerance
en-GBde-DEes-ESfr-FR

Revitalizing pak choi: unveiling the genetic mechanisms behind drought tolerance

12/09/2024 TranSpread

Drought stress is a major challenge for crop production, causing oxidative damage and reducing plant growth. Ascorbic acid plays a key role in protecting plants from this damage, but the regulatory mechanisms that control its levels during drought are not well understood. Addressing these gaps could lead to new approaches for developing drought-resistant crops.

Researchers at Nanjing Agricultural University identified the BcSRC2 gene in pak choi, which regulates drought stress response through ABA signaling. Published (DOI: 10.1093/hr/uhae165) in Horticulture Research on June 21, 2024, the study details how BcSRC2 interacts with BcAPX4, a protein that influences ascorbic acid content, ultimately improving the plant's resilience to drought.

The study shows that BcSRC2 is pivotal in enhancing drought tolerance in pak choi by increasing ascorbic acid levels and reducing APX enzyme activity, which helps minimize oxidative damage. Silencing BcSRC2 decreases ascorbic acid, making the plants more vulnerable to drought, while overexpression increases drought resilience. The researchers also discovered that the transcription factor BcMYB30 binds to the promoter of BcSRC2, linking it to ABA signaling and forming a novel regulatory pathway—BcMYB30-BcSRC2-BcAPX4—that modulates the plant's antioxidant responses.

Dr. Ying Li, lead author of the study, commented, “Our research highlights a crucial regulatory pathway that enhances drought tolerance by adjusting ascorbic acid levels in pak choi. This discovery not only sheds light on plant stress responses but also opens new opportunities for creating more resilient crops through targeted genetic approaches.”

These findings have significant implications for agriculture, particularly in developing drought-tolerant crops. Manipulating the BcSRC2 pathway could boost antioxidant levels in plants, leading to better growth and yield under drought conditions. This approach is crucial for mitigating the effects of climate change on agriculture, ensuring food security in regions facing water scarcity.

###

References

DOI

10.1093/hr/uhae165

Original Source URL

https://doi.org/10.1093/hr/uhae165

Funding information

National Natural Science Foundation of China (31872106), Jiangsu Seed Industry Revitalization Project [JBGS (2021)015], and national vegetable industry technology system (CARS-23-A-16).

About Horticulture Research

Horticulture Research is an open access journal of Nanjing Agricultural University and ranked number two in the Horticulture category of the Journal Citation Reports ™ from Clarivate, 2023. The journal is committed to publishing original research articles, reviews, perspectives, comments, correspondence articles and letters to the editor related to all major horticultural plants and disciplines, including biotechnology, breeding, cellular and molecular biology, evolution, genetics, inter-species interactions, physiology, and the origination and domestication of crops.

Paper title: BcSRC2 interacts with BcAPX4 to increase ascorbic acid content for responding ABA signaling and drought stress in pak choi
Attached files
  • Proposed model of BcSRC2 enhances tolerance to ABA-mediated drought stress by increasing AsA content in pak choi.
12/09/2024 TranSpread
Regions: North America, United States, Asia, China
Keywords: Science, Agriculture & fishing, Life Sciences

Disclaimer: AlphaGalileo is not responsible for the accuracy of news releases posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Testimonials

For well over a decade, in my capacity as a researcher, broadcaster, and producer, I have relied heavily on Alphagalileo.
All of my work trips have been planned around stories that I've found on this site.
The under embargo section allows us to plan ahead and the news releases enable us to find key experts.
Going through the tailored daily updates is the best way to start the day. It's such a critical service for me and many of my colleagues.
Koula Bouloukos, Senior manager, Editorial & Production Underknown
We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet

We Work Closely With...


  • BBC
  • The Times
  • National Geographic
  • The University of Edinburgh
  • University of Cambridge
  • iesResearch
Copyright 2024 by AlphaGalileo Terms Of Use Privacy Statement