Strengthening crop stems: new insights from pepper plant genetics
en-GBde-DEes-ESfr-FR

Strengthening crop stems: new insights from pepper plant genetics

12/09/2024 TranSpread

Stem lodging is a major challenge in agricultural production, especially in crops like peppers with heavy above-ground biomass. Lodging reduces stem strength and stability, severely affecting crop yield and quality. Research has shown that cell wall components—cellulose, hemicellulose, and lignin—are crucial for structural support. However, the genetic mechanisms behind stem lodging in the Solanaceae family remain largely unknown, highlighting the urgent need for deeper exploration into the genes that regulate stem strength and lodging resistance.

Scientists from Hunan Agricultural University have pinpointed a gene linked to stem strength in Capsicum annuum, as reported (DOI: 10.1093/hr/uhae169) in Horticulture Research on June 20, 2024. The study zeroes in on CaSLR1, a MYB family transcription factor identified through genetic analysis of a pepper mutant prone to lodging. The findings reveal that CaSLR1 plays a crucial role in regulating cell wall biosynthesis, thereby enhancing stem strength and minimizing lodging. The gene's function was validated in both pepper and tomato, demonstrating its broader relevance in promoting stem stability.

The research identified CaSLR1 through analysis of a stem lodging-resistant pepper mutant, showing that this MYB transcription factor is essential for secondary cell wall formation. Silencing CaSLR1 led to a significant decrease in cell wall thickness and stem strength, with similar outcomes observed in tomatoes when the homologous gene SlMYB61 was disrupted. Further analysis revealed that CaNAC6, a gene involved in cell wall formation, positively regulates CaSLR1 expression. Experimental validation confirmed that CaNAC6 binds to the CaSLR1 promoter, highlighting the importance of the CaNAC6-CaSLR1 module in maintaining stem integrity. This research advances our understanding of stem development and offers new targets for breeding resilient crops.

Dr. Xuexiao Zou, a lead researcher on the study, noted, “This discovery uncovers a critical genetic factor in the battle against stem lodging in peppers. By understanding how CaSLR1 regulates cell wall biosynthesis, we can develop precise breeding strategies to strengthen stems and boost crop yield. Our findings not only enhance plant genetic knowledge but also hold significant promise for sustainable agriculture.”

The discovery of CaSLR1's role in enhancing stem strength opens new opportunities for breeding programs aimed at improving lodging resistance in peppers and tomatoes. By focusing on this gene, breeders can develop varieties that minimize stem breakage, reducing yield losses and boosting overall productivity. Furthermore, insights into the genetic pathways regulating stem strength can inform strategies for enhancing resilience in other crops, contributing to more sustainable and stable agricultural practices in response to environmental challenges.

###

References

DOI

10.1093/hr/uhae169

Original Source URL

https://doi.org/10.1093/hr/uhae169

Funding information

This research was supported by the National Natural Science Foundation of China (32172584), the Natural Science Foundation of Hunan Province (2021JJ30339), the Hunan Provincial Innovation Foundation for Postgraduate (CX20200655), and the National Natural Science Foundation of China (32002040).

About Horticulture Research

Horticulture Research is an open access journal of Nanjing Agricultural University and ranked number two in the Horticulture category of the Journal Citation Reports ™ from Clarivate, 2023. The journal is committed to publishing original research articles, reviews, perspectives, comments, correspondence articles and letters to the editor related to all major horticultural plants and disciplines, including biotechnology, breeding, cellular and molecular biology, evolution, genetics, inter-species interactions, physiology, and the origination and domestication of crops.

Paper title: Stem lodging Resistance-1 controls stem strength by positively regulating the biosynthesis of cell wall components in Capsicum annuum L.
Attached files
  • CaSLR1 regulates the expression of cellulose, hemicellulose, and lignin biosynthesis related genes in pepper stems.
12/09/2024 TranSpread
Regions: North America, United States, Asia, China
Keywords: Science, Agriculture & fishing

Disclaimer: AlphaGalileo is not responsible for the accuracy of news releases posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Testimonials

For well over a decade, in my capacity as a researcher, broadcaster, and producer, I have relied heavily on Alphagalileo.
All of my work trips have been planned around stories that I've found on this site.
The under embargo section allows us to plan ahead and the news releases enable us to find key experts.
Going through the tailored daily updates is the best way to start the day. It's such a critical service for me and many of my colleagues.
Koula Bouloukos, Senior manager, Editorial & Production Underknown
We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet

We Work Closely With...


  • BBC
  • The Times
  • National Geographic
  • The University of Edinburgh
  • University of Cambridge
  • iesResearch
Copyright 2024 by AlphaGalileo Terms Of Use Privacy Statement