Retinal disorder diagnosis improved by new AI-powered medical imaging, study shows
en-GBde-DEes-ESfr-FR

Retinal disorder diagnosis improved by new AI-powered medical imaging, study shows


Population-based studies have shown retinal disorders are the most common cause of irreversible blindness in developed countries and the second most common cause of blindness after cataracts in developing countries. Medical imaging techniques are key to early detection of retinal disorders, but the technology currently available presents many challenges for practitioners.

To improve the speed and accuracy of diagnoses of retinal disorders, a group of researchers from Xi'an Jiaotong-Liverpool University (XJTLU) and VoxelCloud Inc. in China, has introduced an AI-powered medical imaging technique – DualStreamFoveaNet (DSFN) to address the current imaging challenges.

Dr Sifan Song, a PhD graduate from XJTLU's School of AI and Advanced Computing and first author of the study, says: "Our new imaging technique, DSFN, has the potential to aids quick and accurate diagnosis of retinal disorders. It also has the potential to be used for other medical conditions that require anatomical structure-based disease diagnosis. For example, in lung cancer screening."

DSFN combines retina images with vascular distribution information to accurately locate the fovea – a depression at the back of the eye where visual acuity is at its highest - in complex clinical scenarios.

Dr Sifan Song says: "Accurate localisation of the fovea allows medical professionals to detect early signs of ocular diseases, such as tiny changes or deposits in the macular region that surrounds the fovea. This helps to regularly monitor disease progression, evaluate the effectiveness of treatment, or adjust treatment plans, and can prevent retinal disorders that lead to irreversible vision loss.

"However, the current medical imaging techniques for identifying fovea location have many limitations."

Dr Song explains that the surrounding retinal tissue's colour intensity makes the fovea's dark appearance indistinguishable from the retinal background, which is further obscured by retinal diseases.

He emphasises that low light conditions and non-standard fovea locations during photography further challenge accurate fovea localisation.

"Blurred and poorly lit images make visualising the back of the eye difficult and may lead to a misdiagnosis. The DSFN helps to overcome many of these challenges," Dr Song adds.

Dr Song explains the design of DSFN reduces computational costs while maintaining high accuracy, making it more suitable and affordable for application in clinical environments.

"Lower computational costs are accompanied by faster processing speeds, allowing doctors to obtain diagnostic results more quickly and enabling faster model updates and iterations that lead to more accurate predictions of ocular diseases," says Dr Song.

Dr Song is a postdoctoral researcher working at Harvard Medical School and Massachusetts General Hospital.

S. Song et al., "DualStreamFoveaNet: A Dual Stream Fusion Architecture with Anatomical Awareness for Robust Fovea Localization," in IEEE Journal of Biomedical and Health Informatics, doi: 10.1109/JBHI.2024.3445112.
Attached files
  • Comparing visual results of fovea localisation predictions by various methods. Credit: XJTLU/IEEE 10.1109/JBHI.2024.3445112
  • Illustration of the shared global anatomical relationships among the fovea, optic disc, and main blood vessels, in normal (a), diseased (b,c), and poorly conditioned (d) retina images. Credit: XJTLU/IEEE 10.1109/JBHI.2024.3445112
Regions: Asia, China
Keywords: Applied science, Artificial Intelligence, Health, People in health research, Well being, Medical, Science, Life Sciences

Disclaimer: AlphaGalileo is not responsible for the accuracy of news releases posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Testimonials

For well over a decade, in my capacity as a researcher, broadcaster, and producer, I have relied heavily on Alphagalileo.
All of my work trips have been planned around stories that I've found on this site.
The under embargo section allows us to plan ahead and the news releases enable us to find key experts.
Going through the tailored daily updates is the best way to start the day. It's such a critical service for me and many of my colleagues.
Koula Bouloukos, Senior manager, Editorial & Production Underknown
We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet

We Work Closely With...


  • BBC
  • The Times
  • National Geographic
  • The University of Edinburgh
  • University of Cambridge
  • iesResearch
Copyright 2024 by AlphaGalileo Terms Of Use Privacy Statement