Unlocking the genetic secrets of red-flesh apples: a bittersweet discovery
en-GBde-DEes-ESfr-FR

Unlocking the genetic secrets of red-flesh apples: a bittersweet discovery

12/09/2024 TranSpread

The striking red-flesh trait in apples appeals to breeders and consumers alike, offering visual appeal and potential health advantages due to high anthocyanin content. However, the genetic complexity behind this trait remains underexplored, as most studies focus narrowly on total anthocyanin levels. Addressing this gap, a deeper analysis of genetic factors and phenolic interactions is crucial for advancing red-flesh apple breeding.

Conducted by a team from the University of Angers and Institut Agro, and published (DOI: 10.1093/hr/uhae171) in Horticulture Research on June 27, 2024, this study explored the genetic architecture of red-flesh pigmentation in apples using pedigree-based quantitative trait loci (QTL) mapping. The research assessed 452 genotypes from five interconnected F1 families, pinpointing genetic regions that influence flesh color and phenolic profiles, offering valuable insights for future breeding.

The study identified 24 QTLs associated with red-flesh color intensity and phenolic profiles, spanning multiple genetic loci, including LG1, LG2, LG8, LG9, LG11, and LG16. A key finding was a genetic model highlighting the competition between anthocyanin and flavan-3-ol synthesis, which significantly impacts red-flesh development. The research demonstrated that the intensity of red-flesh pigmentation could be enhanced by selecting favorable alleles from both red- and white-flesh apple parents, offering a strategic approach for targeted breeding. This method moves beyond traditional color assessments by incorporating quantitative descriptors that capture the nuanced genetic interactions influencing apple flesh color. The discovery of these genetic regions not only deepens the understanding of red-flesh pigmentation but also provides a valuable framework for breeders to develop new apple varieties with improved coloration and potential health benefits.

Dr. Jean-Marc Celton, the lead author, commented, “Our findings unravel the complex genetic factors behind red-flesh pigmentation in apples. Understanding the interaction between phenolic compounds and genetic elements brings us closer to creating apple varieties that combine striking color with nutritional value. This research opens up new possibilities for breeding high-quality red-flesh apples.”

These findings hold significant promise for apple breeding programs. By targeting QTLs related to anthocyanin and flavan-3-ol balance, breeders can produce red-flesh apples that appeal aesthetically and offer health benefits. The study’s insights could extend to other fruit species with similar pigmentation traits, potentially transforming horticultural crop improvement on a broader scale.

###

References

DOI

10.1093/hr/uhae171

Original Source URL

https://doi.org/10.1093/hr/uhae171

Funding information

This material is based upon work supported by the ANRT (Association nationale de la recherche et de la technologie) with a CIFRE fellowship granted to Pierre Bouillon (convention N° 2021/0182), supported by IFO and IRHS.

About Horticulture Research

Horticulture Research is an open access journal of Nanjing Agricultural University and ranked number two in the Horticulture category of the Journal Citation Reports ™ from Clarivate, 2023. The journal is committed to publishing original research articles, reviews, perspectives, comments, correspondence articles and letters to the editor related to all major horticultural plants and disciplines, including biotechnology, breeding, cellular and molecular biology, evolution, genetics, inter-species interactions, physiology, and the origination and domestication of crops.

Paper title: Tracing the color: quantitative trait loci analysis reveals new insights into red-flesh pigmentation in apple (Malus domestica)
Attached files
  • Positions of QTLs controlling flesh color parameters and phenolic compounds. Number of linkage group (LG) are indicated above each group. Positions of SNPs are indicated on the genetic map. Name of the trait is following by Bayes Factor (BF); QTL region and phenotypic variance explained (PVE). Missing PVE indicated inability of QTL model to estimate an accurate value.
12/09/2024 TranSpread
Regions: North America, United States, Europe, France
Keywords: Science, Agriculture & fishing

Disclaimer: AlphaGalileo is not responsible for the accuracy of news releases posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Testimonials

For well over a decade, in my capacity as a researcher, broadcaster, and producer, I have relied heavily on Alphagalileo.
All of my work trips have been planned around stories that I've found on this site.
The under embargo section allows us to plan ahead and the news releases enable us to find key experts.
Going through the tailored daily updates is the best way to start the day. It's such a critical service for me and many of my colleagues.
Koula Bouloukos, Senior manager, Editorial & Production Underknown
We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet

We Work Closely With...


  • BBC
  • The Times
  • National Geographic
  • The University of Edinburgh
  • University of Cambridge
  • iesResearch
Copyright 2024 by AlphaGalileo Terms Of Use Privacy Statement