Ancient reef-builders dodged extinction — at least temporarily
en-GBde-DEes-ESfr-FR

Ancient reef-builders dodged extinction — at least temporarily


Will modern coral reefs go extinct? The answer is uncertain, but some of their ancient counterparts managed to dodge a bullet — for a while, at least.

Scientists from Osaka Metropolitan University have discovered that ancient reef-building organisms called stromatoporoids survived the Late Devonian mass extinction event and continued to thrive as major reef-builders long after their presumed extinction. These findings shed light on how life on Earth has responded to past environmental changes, offering valuable insights into the resilience and adaptability of marine ecosystems.

Corals are the most well-known reef-builders today, but reefs have been built by a variety of organisms throughout Earth history. One such group was the stromatoporoids, sponge-like organisms that played a major role in reef-building during the Paleozoic, particularly in the Silurian and Devonian periods (roughly 444 to 359 million years ago).

“Stromatoporoids were thought to have vanished as reef-builders after the Late Devonian extinction,” said Yoichi Ezaki, a professor at Osaka Metropolitan University’s Graduate School of Science and lead author of the study.

The Late Devonian extinction was one of five mass extinction events in Earth history. It significantly affected marine life, causing a decline in the diversity of reef-building organisms. During the Carboniferous (roughly 359 to 299 million years ago), which followed this devastating event, no stromatoporoid reef was known to exist…until now.

Scrutinizing fossils from Carboniferous rocks found in the Akiyoshi Limestone Group of southwest Japan, the research team discovered laminated skeletons with laminae, or layered, and pillar-like structures — typical features of stromatoporoids.

“Contrary to previous beliefs, our findings in Japan show stromatoporoids not only survived but continued to be instrumental in reef construction during the Carboniferous,” said Ezaki. “We feel sure this discovery will rewrite the content of textbooks.”

The Akiyoshi Limestone formed on a seamount in the Panthalassa Ocean through the Mississippian (early Carboniferous) to middle Permian periods. Stromatoporoids, alongside the organism Chaetetes, thrived on the warm shallow-water seamounts of the Panthalassa Ocean, benefiting from conditions such as enhanced ocean circulation, upwelling, and nutrient supply, culminating in elevated carbonate saturation due to ongoing global glaciation.

This suggests that isolated and unique oceanic environments like Akiyoshi may have allowed the survival of these resilient organisms.

“The isolated Akiyoshi seamount might have harbored a unique biological community, potentially forming a ‘Carboniferous Galápagos’ that offers a glimpse into the complex dynamics of ancient marine ecosystems,” said Ezaki.

Intensified global cooling and exposure above sea level eventually took their toll on the stromatoporoids. Still, the continued presence of these reef-building organisms in the late Carboniferous suggests that they adapted to new ecological niches in response to the changing climate.

The study’s findings highlight the potential resilience of certain reef-building organisms in distinctive environments, providing valuable lessons for today’s conservation efforts.

“Understanding how stromatoporoids and other organisms adapted to survive past climatic and environmental upheavals offers crucial insights into how modern reef ecosystems might handle current and future climate changes,” said Ezaki.

The study was published in Geology.

Funding
This research was supported by Japan Society for the Promotion of Science (JSPS) KAKENHI Grants JP21K03738 and JP22K03798.

###

About OMU
Established in Osaka as one of the largest public universities in Japan, Osaka Metropolitan University is committed to shaping the future of society through “Convergence of Knowledge” and the promotion of world-class research. For more research news, visit https://www.omu.ac.jp/en/ and follow us on social media: X, Facebook, Instagram, LinkedIn.
Journal: Geology
Title: Post-Devonian re-emergence and demise of stromatoporoids as major reef-builders on a Carboniferous Panthalassan seamount
DOI: 10.1130/G52420.1
Author(s): Yoichi Ezaki, Mitsuru Masui, Koichi Nagai, Gregory E. Webb, Koki Shimizu, Shota Sugama, Natsuko Adachi, Tetsuo Sugiyama
Publication date: 13 August 2024
URL: https://doi.org/10.1130/G52420.1
Attached files
  • Stromatoporoids: Alternating layers of stromatoporoids (black to dark gray) and Chaetetes (light gray) in an upwardly convex structure. Credit: Osaka Metropolitan University
Regions: Asia, Japan
Keywords: Science, Climate change, Earth Sciences, Palaeontology

Disclaimer: AlphaGalileo is not responsible for the accuracy of news releases posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Testimonials

For well over a decade, in my capacity as a researcher, broadcaster, and producer, I have relied heavily on Alphagalileo.
All of my work trips have been planned around stories that I've found on this site.
The under embargo section allows us to plan ahead and the news releases enable us to find key experts.
Going through the tailored daily updates is the best way to start the day. It's such a critical service for me and many of my colleagues.
Koula Bouloukos, Senior manager, Editorial & Production Underknown
We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet

We Work Closely With...


  • BBC
  • The Times
  • National Geographic
  • The University of Edinburgh
  • University of Cambridge
  • iesResearch
Copyright 2024 by AlphaGalileo Terms Of Use Privacy Statement