From beetles to bottles: innovative yarn quenches thirst with fog
en-GBde-DEes-ESfr-FR

From beetles to bottles: innovative yarn quenches thirst with fog

27/09/2024 TranSpread

In research published (DOI: 10.1007/s10118-024-3109-5) on April 10, 2024, in the Chinese Journal of Polymer Science, scientists from the Beijing Institute of Graphic Communication and Beihang University unveiled a double-stranded yarn with alternating hydrophobic and hydrophilic properties. Inspired by the water-collecting abilities of desert beetles and spider silk, the yarn, produced using electrospinning and twisting techniques, is designed for high-efficiency fog collection, addressing the critical need for sustainable water sources.

The research highlights the development of a double-stranded yarn made from hydrophobic poly vinylidene fluoride-co-hexafluoropropylene (PVDF-HFP) and hydrophilic polyacrylonitrile (PAN) nanofibers, inspired by natural fog-collecting organisms like desert beetles and spider silk. Using electrospinning and twisting techniques, the team engineered the yarn with alternating hydrophobic and hydrophilic segments, creating a structure that mimics nature's water-harvesting mechanisms. The hydrophobic sections promote rapid water droplet accumulation, while the hydrophilic sections enhance the transportation of these droplets, allowing for faster coalescence and collection. When tested in a controlled fog environment, this yarn demonstrated a significant improvement in water collection efficiency, achieving a rate of 3.20 g·h−1·cm−2. The combination of hydrophobic water capture and hydrophilic water transport proved to be far more effective than using homogeneous yarns. This innovation presents a scalable solution, offering high performance in fog-rich environments, and could be vital for improving water access in drought-prone regions.

Prof. Yong Zhao from Beihang University, an expert in bioinspired materials, stated, "This advancement shows how biomimicry can drive highly efficient and sustainable solutions to global challenges such as water scarcity. The alternating wettability design emulates nature's precision, significantly boosting fog collection performance."

The research has broad implications, particularly for regions facing severe water shortages. The yarn’s scalable and efficient design makes it ideal for use in fog-prone areas, offering a reliable source of freshwater. This breakthrough also paves the way for future innovations in water-harvesting technologies, with the potential to enhance the sustainability of atmospheric water collection systems worldwide.

###

References

DOI

10.1007/s10118-024-3109-5

Original Source URL

https://doi.org/10.1007/s10118-024-3109-5

Funding information

This work was financially supported by the National Natural Science Foundation of China (Nos. 22105012, 21975007, 22175007 and 52172080), Beijing Natural Science Foundation (Nos. 2242035, 2242041, 2232054 and 2232037), the National Natural Science Foundation for Outstanding Youth Foundation, the Fundamental Research Funds for the Central Universities, the National Program for Support of Top-notch Young Professionals, and the 111 project (No. B14009), the Youth Excellence Project of Beijing Institute of Graphic Communication (No. Ea202403) and the Scientific Research Foundation of Beijing Institute of Graphic Communication (No. 27170124031).

About Chinese Journal of Polymer Science

Chinese Journal of Polymer Science (CJPS) is a monthly journal published in English and sponsored by the Chinese Chemical Society and the Institute of Chemistry, Chinese Academy of Sciences. CJPS is edited by a distinguished Editorial Board headed by Professor Qi-Feng Zhou and supported by an International Advisory Board in which many famous active polymer scientists all over the world are included. Manuscript types include Editorials, Rapid Communications, Perspectives, Tutorials, Feature Articles, Reviews and Research Articles. According to the Journal Citation Reports, 2023 Impact Factor (IF) of CJPS is 4.1.

Paper title: Bioinspired Double-stranded Yarn with Alternating Hydrophobic/Hydrophilic Patterns for High-efficiency Fog Collection
Attached files
  • Morphology and wetting property. (a, b) SEM images of aligned PVDF-HFP and PAN fibers.
27/09/2024 TranSpread
Regions: Asia, China, North America, United States
Keywords: Science, Chemistry

Disclaimer: AlphaGalileo is not responsible for the accuracy of news releases posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Testimonials

For well over a decade, in my capacity as a researcher, broadcaster, and producer, I have relied heavily on Alphagalileo.
All of my work trips have been planned around stories that I've found on this site.
The under embargo section allows us to plan ahead and the news releases enable us to find key experts.
Going through the tailored daily updates is the best way to start the day. It's such a critical service for me and many of my colleagues.
Koula Bouloukos, Senior manager, Editorial & Production Underknown
We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet

We Work Closely With...


  • BBC
  • The Times
  • National Geographic
  • The University of Edinburgh
  • University of Cambridge
  • iesResearch
Copyright 2024 by AlphaGalileo Terms Of Use Privacy Statement