Chickpeas– sustainable and climate-friendly foods of the future
en-GBde-DEes-ESfr-FR

Chickpeas– sustainable and climate-friendly foods of the future


Climate change has a negative impact on food security. An international research team led by Wolfram Weckwerth from the University of Vienna has now conducted a study to investigate the natural variation of different chickpea genotypes and their resistance to drought stress. The scientists were able to show that chickpeas are a drought-resistant legume plant with a high protein content that can complement grain cultivation systems even in urban areas. The study was recently published in the specialist magazine The Plant Biotechnology.

Long periods of drought stress have also become a reality in Central Europe due to climate change, a major threat to plant productivity, harvests and therefore food security. At the same time, there is a decline in the use of plant genetic diversity, and the global food system has become more and more uniform. While there are approximately 7,000 edible crops, two-thirds of global food production is based on just nine crop species. "This narrow genetic base can have several negative consequences, such as increased susceptibility of plants to diseases and pests, reduced resistance to factors such as drought and climate change, and increased economic fragility," explains molecular biologist Wolfram Weckwerth from the University of Vienna. "Maintaining adequate plant and genetic diversity is crucial for agriculture, which must adapt to future changing conditions. With our new study, we have taken an important step in this direction and looked at the chickpea as an important food of the future," says Weckwerth

The chickpea is currently not one of the plants mentioned above on which the global diet is currently mainly based. The international research team led by Wolfram Weckwerth has now researched the natural variations of different chickpea genotypes and their resistance to drought stress and achieved promising results. The team managed to grow many different chickpea varieties under drought stress in a field experiment in a Vienna city region, demonstrating that chickpeas are a great alternative legume plant with a high protein content that can complement grain farming systems in urban areas. "The different varieties and wild types show very different mechanisms to deal with persistent drought stress. This natural genetic variability is particularly important in order to withstand climate change and ensure the survival of the plant," says Weckwerth.

"In our study, we used a stress susceptibility index (SSI) to assess the effects of drought stress on yield. This allowed us to identify genotypes that perform best and worst under stressful conditions. Our findings are crucial for the selection of genotypes for breeding drought-tolerant chickpeas," explains Palak Chaturvedi from the University of Vienna, lead author of the study. The team used artificial intelligence, multivariate statistics and modeling to identify markers and mechanisms for better resilience to drought stress.

"With their high protein content and their drought resistance, legumes such as chickpeas are a food of the future. Another advantage is that a higher proportion of legumes in a country's agricultural systems improves the overall efficiency of nitrogen use - this also makes agriculture more sustainable," summarizes Weckwerth.
Natural variation in the chickpea metabolome under drought stress. Palak Chaturvedi, Iro Pierides, Cristina López-Hidalgo, Vanika Garg, Shuang Zhang, Rutwik Barmukh, Anke Bellaire, Jiahang Li, Gert Bachmann, Luis Valledor, Rajeev K Varshney, Arindam Ghatak, Wolfram Weckwerth (2024). Plant Biotechnology Journal.
DOI: 10.1111/pbi.14447
Attached files
  • Fig. 1: The Viennese authors of the Study: l.t.r. Anke Bellaire and Arindam Ghatak collected chickpea leaves from the field and measured the physiological parameters C: Wolfram Weckwerth
  • Fig. 2: Chickpea plants grown in the fields of the Vienna city C: Arindam Ghatak
Regions: Europe, Austria
Keywords: Science, Agriculture & fishing, Climate change, Life Sciences

Disclaimer: AlphaGalileo is not responsible for the accuracy of news releases posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Testimonials

For well over a decade, in my capacity as a researcher, broadcaster, and producer, I have relied heavily on Alphagalileo.
All of my work trips have been planned around stories that I've found on this site.
The under embargo section allows us to plan ahead and the news releases enable us to find key experts.
Going through the tailored daily updates is the best way to start the day. It's such a critical service for me and many of my colleagues.
Koula Bouloukos, Senior manager, Editorial & Production Underknown
We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet

We Work Closely With...


  • BBC
  • The Times
  • National Geographic
  • The University of Edinburgh
  • University of Cambridge
  • iesResearch
Copyright 2024 by AlphaGalileo Terms Of Use Privacy Statement