Lithuanian scientists develop cellulose recycling method with applications ranging from textiles to medical devices
en-GBde-DEes-ESfr-FR

Lithuanian scientists develop cellulose recycling method with applications ranging from textiles to medical devices


The efficient use of cellulose – the primary plant scaffold and a major natural building block – could address many issues associated with petroleum-based polymers across various industries. In the search for more sustainable uses of cellulose, Lithuanian scientists have developed a production method for a nanofibrous cellulose matrix, which has the potential to replace non-renewable industrial even in biomedical applications.

Textile, clothing, toys, and sports equipment made from synthetic petroleum-based materials have a significant negative impact on the environment through their entire life cycle, from production to waste management.

Scientists argue that it is necessary to replace petroleum-based materials with environmentally friendly materials and to demonstrate to consumers that products that have been in use for many years can be replaced while retaining their effectiveness. According to Ingrida Pauliukaitytė, a PhD student at Kaunas University of Technology (KTU) and one of the creators of the new environmentally friendly cellulose nanofibre, the invention is a step towards a more sustainable industry.

A unique production method

Cellulose is the Earth’s most abundant and widespread natural polysaccharide, commonly found in plant cell walls, algae or synthesised by certain bacteria. “I chose cellulose as a research object because of its natural origin and favourable properties: its biocompatibility and degradability, variety of chemical strains, and wide range of applications,” says the inventor.

The invention was developed using the wet-type electrospinning method, whereby cellulose is dissolved in special solvents – ionic liquids – and the solution is then converted into fibres. “This is a method that allows the creation of cellulose matrices with a unique gel-like structure, similar to cellulose fibres naturally synthesised by bacteria,” says the PhD student at the KTU Faculty of Chemical Technology (CTF).

This method of creating cellulose has an advantage in the market due to its environmental friendliness. In particular, the dissolution method used is more environmentally friendly due to the use of “green solvents”.

Also, the raw material for this production process can be either raw cellulose or cellulose waste. Depending on the purity of the material, the resulting fibre can be used for different products. The recycled cellulose can be used to produce new polymer composite products such as toys, sports equipment, household items. If the raw material is pure plant cellulose, biomedical applications have great potential, where this type of nanofibrous structure has unique biocompatibility properties.

A significant boost for cancer research

“Our invention – a nanofibrous cellulose matrix – is like a scaffold, a structural support that helps cells to divide and grow,” explains Pauliukaitytė.

The biocompatibility mentioned by KTU scientist Pauliukaitytė is very important in tissue engineering to avoid the living organism’s immune response to a material used for cell reproduction other than the one naturally synthesised by the organism.

“In addition, cellulose has very favourable mechanical properties, so that the fibres developed are strong and can withstand the high stresses that arise when cells proliferate. Since cellulose absorbs water, the use of cellulose fibres in wound healing can control the amount of moisture that occurs during the healing process,” says Pauliukaitytė.

So far, the applicability of cellulose in tissue engineering has been tested for the reconstruction of cartilage, bone and vascular structures. However, given the biocompatibility, structural and moisture retention properties of cellulose, this polymer has great potential for use in regenerative medicine, which aims to stimulate the body’s natural recovery mechanisms and restore lost biological functions, and for organ growth.

In addition, the cellulose nanofibres developed are not only biocompatible and environmentally friendly, but also have the potential to form three-dimensional (3D) cell models that better reflect cell behaviour in the natural environment. “This is a significant advantage, especially in tissue engineering and cancer research, as 3D cultures allow for more precise experiments and a better understanding of cell growth and interactions,” says Pauliukaitytė.

The article Regenerated nanofibrous cellulose electrospun from ionic liquid: Tuning properties toward tissue engineering was published in Journal of Biomedical Materials Research Part A, and can be accessed here.
Pauliukaitytė, I. et al. (2024a) ‘Regenerated nanofibrous cellulose electrospun from ionic liquid: Tuning properties toward Tissue Engineering’, Journal of Biomedical Materials Research Part A [Preprint]. doi:10.1002/jbm.a.37798.
Attached files
  • ngrida20auliukaityt497.jpg
  • A scanning electron microscope image of new cellulose nanofibre
Regions: Europe, Lithuania
Keywords: Applied science, Technology, Health, Medical

Disclaimer: AlphaGalileo is not responsible for the accuracy of news releases posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Testimonials

For well over a decade, in my capacity as a researcher, broadcaster, and producer, I have relied heavily on Alphagalileo.
All of my work trips have been planned around stories that I've found on this site.
The under embargo section allows us to plan ahead and the news releases enable us to find key experts.
Going through the tailored daily updates is the best way to start the day. It's such a critical service for me and many of my colleagues.
Koula Bouloukos, Senior manager, Editorial & Production Underknown
We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet

We Work Closely With...


  • BBC
  • The Times
  • National Geographic
  • The University of Edinburgh
  • University of Cambridge
  • iesResearch
Copyright 2024 by AlphaGalileo Terms Of Use Privacy Statement