Single-cell RNA-seq reveals the transcriptional program underlying tumor progression and metastasis in neuroblastoma
en-GBde-DEes-ESfr-FR

Single-cell RNA-seq reveals the transcriptional program underlying tumor progression and metastasis in neuroblastoma

04/11/2024 Frontiers Journals

Neuroblastoma (NB), the most prevalent extracranial solid tumor in children, poses a significant therapeutic challenge due to its metastasis and high heterogeneity. A recent study leveraging single-cell RNA sequencing (scRNA-seq) has uncovered vital molecular mechanisms underlying NB's progression and metastasis, shedding light on potential therapeutic targets. The research analyzed primary tumors and matched metastases from NB patients, revealing a 'starter' subpopulation of tumor cells responsible for initiating metastasis. By applying various analytical approaches, including evolutionary trajectory analysis and cell-state differentiation prediction, the study delineated the transcriptional landscape of NB and identified a signature associated with poor prognosis.

The investigation involved collecting tumor samples from six NB patients, encompassing both primary and metastatic sites. These samples were subjected to scRNA-seq to generate a comprehensive single-cell expression atlas. The analysis revealed 11 distinct clusters, each with unique transcriptional features, highlighting the heterogeneity of NB. Through inferred copy number variation (CNV) analysis and whole genomic sequencing (WGS), malignant cells were distinguished from non-malignant cells, facilitating a deeper understanding of tumor cell populations.

The study's trajectory analysis pinpointed a specific cluster, termed 'starter' cells, as the likely initiators of NB's metastatic spread. These cells, identified in both primary tumors and metastases, exhibited a high proliferative capacity and were characterized by an active cell cycle and DNA repair pathways. The 'starter' cells also demonstrated partial epithelial-to-mesenchymal transition (EMT), a process associated with enhanced migratory and invasive properties of cancer cells, suggesting a role in NB's metastatic spread.

To further probe the interactions between NB cells and their microenvironment, the researchers analyzed scRNA-seq data from non-malignant cells within the tumor ecosystem. They discovered robust interactions, particularly mediated by the TGFβ signaling pathway, between the 'starter' cells and various immune and stromal cells. This finding points to a complex crosstalk that may influence tumor progression and immune evasion.

In a significant discovery, the study identified a 150-gene 'starter' cell signature that was associated with poor clinical outcomes across multiple datasets. The signature's predictive power for unfavorable prognosis was robust across different sequencing platforms and patient cohorts, underscoring its potential utility in clinical settings.

Despite the study's comprehensive approach, it acknowledged certain limitations, including the relatively small sample size due to the challenges of collecting paired primary and metastatic NB samples. However, the findings were validated using public datasets and independent experimental approaches, bolstering the study's conclusions.

In conclusion, this study provides a detailed molecular roadmap of NB's metastatic journey, identifying a key cell subpopulation and associated gene signature that could inform future therapeutic strategies. The insights into the cellular and molecular dynamics of NB have the potential to improve prognostication and guide targeted interventions for this aggressive pediatric cancer.

DOI: 10.1007/s11684-024-1081-7

Attached files
  • Fig 1
04/11/2024 Frontiers Journals
Regions: Asia, China
Keywords: Health, Medical

Disclaimer: AlphaGalileo is not responsible for the accuracy of news releases posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Testimonials

For well over a decade, in my capacity as a researcher, broadcaster, and producer, I have relied heavily on Alphagalileo.
All of my work trips have been planned around stories that I've found on this site.
The under embargo section allows us to plan ahead and the news releases enable us to find key experts.
Going through the tailored daily updates is the best way to start the day. It's such a critical service for me and many of my colleagues.
Koula Bouloukos, Senior manager, Editorial & Production Underknown
We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet

We Work Closely With...


  • BBC
  • The Times
  • National Geographic
  • The University of Edinburgh
  • University of Cambridge
  • iesResearch
Copyright 2024 by AlphaGalileo Terms Of Use Privacy Statement