Sensitive ceramics
en-GBde-DEes-ESfr-FR

Sensitive ceramics

14/11/2024 Empa

Most people think of coffee cups, bathroom tiles or flower pots when they hear the word "ceramic". Not so Frank Clemens. For the research group leader in Empa's Laboratory for High-Performance Ceramics, ceramics can conduct electricity, be intelligent, and even feel. Together with his team, Clemens is developing soft sensor materials based on ceramics. Such sensors can "feel" temperature, strain, pressure or humidity, for instance, which makes them interesting for use in medicine, but also in the field of soft robotics.

Soft ceramics – how is that supposed to work? Materials scientists like Clemens define ceramics as an inorganic, non-metallic material that is produced from a collection of loose particles in a high-temperature process known as sintering. The composition of ceramics can vary – and their properties change as a result. But earthenware and porcelain are nowhere to be seen in Clemens' lab. The researchers work with materials such as potassium sodium niobate and zinc oxide, but also with carbon particles.

None of these materials are soft. In order to fashion them into flexible sensors, the researchers embed ceramic particles in stretchable plastics. "We work with so-called highly filled systems," says Clemens. "We take a matrix made of a thermoplastic and fill it with as many ceramic particles as possible without compromising the elasticity of the matrix." If this highly filled matrix is then stretched, compressed or exposed to temperature fluctuations, the distance between the ceramic particles changes, and with it the electrical conductivity of the sensor. It's not necessary to fill the entire matrix with ceramic, emphasizes Clemens: Using 3D printing, the researchers can also embed the ceramic sensors as a kind of "nerves" in flexible components.

Selective and intelligent

The production of soft ceramic sensors is not trivial. Usually, soft sensors are sensitive to different environmental influences at the same time, such as temperature, strain and humidity. "If you want to use them in practice, you need to know what you are measuring," says Clemens. His research group has succeeded in producing soft sensors that react very selectively only to pressure or only to temperature. The researchers integrated these sensors into a prosthetic hand. The prosthesis "senses" the flexion of its fingers and notices when it touches a hot surface. Such "sensitivity" would be an advantage both for robotic gripping tools and for human prostheses.

The Empa team even went one step further with the development of a soft "robot skin". Similar to human skin, the multi-layered plastic skin reacts to touch and temperature differences. In order to evaluate the complex data, the Empa researchers developed an AI model together with researchers from the University of Cambridge and trained it using data from around 4,500 measurements. This is also reminiscent of human perception, as the nerve impulses from our skin are evaluated and extrapolated in the brain.

In their most recent project, the researchers were able to combine the ceramic sensors with artificial muscles. Together with researchers from ETH Zurich and the University of Tokyo, they have developed a bio-hybrid robot that recognizes its contraction state with the help of a soft, biocompatible, tissue-integrated piezoresistive sensor. This work was published in the journal Advanced Intelligent Systems.

Safe collaboration between humans and machines

The aim, says Frank Clemens, is for humans and machines to work together safely and harmoniously. "Today's robotic systems are big, clunky and very strong. They can be dangerous for humans," explains the researcher. If in future we are to increasingly share our workplaces with robots, they should react quickly and sensitively to touch. "If you accidentally touch another person, you automatically pull away," says Clemens. "We want to give robots the same reflex." The researchers are now looking for industrial partners in the field of robotic gripping systems. But soft sensors are also in demand in medicine – the team recently completed an Innosuisse project with the company IDUN Technologies, in which they produced flexible electrodes for brain wave measurements.

The work is far from over: The researchers want to make their soft ceramic sensors even more sensitive and intelligent. This involves combining new ceramic materials and soft polymers and optimizing their sensor properties. The secret to success lies in the interaction of these two components.
M Filippi, A Balciunaite, A Georgopoulou, P Paniagua, F Drescher, M Nie, S Takeuchi, F Clemens, RK Katzschmann: Sensor-Embedded Muscle for Closed-Loop Controllable Actuation in Proprioceptive Biohybrid Robots; Advanced Intelligent Systems (2024). doi: 10.1002/aisy.202400413
Attached files
  • Empa researcher Frank Clemens and his team develop soft and intelligent sensors materials based on ceramic particles. Image: Empa
  • Empa researcher Christopher Bascucci demonstrates a soft material which can be enhanced with ceramic sensors. Image: Empa
14/11/2024 Empa
Regions: Europe, Switzerland
Keywords: Applied science, Technology

Disclaimer: AlphaGalileo is not responsible for the accuracy of news releases posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Testimonials

For well over a decade, in my capacity as a researcher, broadcaster, and producer, I have relied heavily on Alphagalileo.
All of my work trips have been planned around stories that I've found on this site.
The under embargo section allows us to plan ahead and the news releases enable us to find key experts.
Going through the tailored daily updates is the best way to start the day. It's such a critical service for me and many of my colleagues.
Koula Bouloukos, Senior manager, Editorial & Production Underknown
We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet

We Work Closely With...


  • BBC
  • The Times
  • National Geographic
  • The University of Edinburgh
  • University of Cambridge
  • iesResearch
Copyright 2024 by AlphaGalileo Terms Of Use Privacy Statement