Nanofibrous metal oxide semiconductor for sensory face
en-GBde-DEes-ESfr-FR

Nanofibrous metal oxide semiconductor for sensory face

15/11/2024 TranSpread

Room-temperature (RT) gas sensors with high sensitivity are essential in low-power Internet-of-Things (IoT) applications, such as smart sensors, wearable devices and mobile robots. Among these, metal oxide semiconductor-based gas sensors are valued for their low production cost, high sensitivity and ease of use, making them suitable for detecting flammable, explosive, toxic, and exhaled gases. However, further fiber diameter reduction and real-time monitoring integration remain underexplored.

In a study published in the KeAi journal Wearable Electronics, a group of researchers from China and South Korea described a new sensor they have developed — ultrathin (~88 nm) amorphous indium gallium zinc oxide (IGZO) nanofibres for wireless and real-time human breath monitoring.

"IGZO nanofibres were created as the charge transport layer to enhance the surface area for gas diffusion using an electrospinning approach,” explains the study's lead author, Qing Ma, a post-doctoral fellow at the School of Electronic Science and Engineering at Southeast University. “The resulting field-effect properties demonstrated an average mobility of 2.2 cm²/V·s and an on/off ratio of 10⁵.”

Notably, the team successfully recorded human breath in fast, normal and deep states, showing the sensor’s fast response and recovery times and stable operation. “By integrating the sensor with a flexible circuit board and mounting them on a face mask, we achieved wireless and real-time monitoring of respiratory status, highlighting its potential for practical applications in health monitoring,” says Ma.

The researchers also found that electrical transport in IGZO nanofibres is driven by oxygen vacancies, water vapor and temperature significantly affect its conductivity. When a voltage is applied, the sensor’s current significantly decreases and quickly recovers during a breath cycle, with a fast response and recovery time of approximately 0.7 seconds.

According to senior and co-corresponding author Binghao Wang, this is a promising solution in the field of personalised healthcare and pandemic prevention.

“An IGZO NF-based sensor integrated into a flexible circuit achieved a compact size of 15 × 35 mm², marking significant progress in the miniaturisation efforts for smart mask technology,” says Wang. “The recorded electrical signals can be visualised via a smartphone equipped with a customised mobile app, underscoring the potential for the widespread adoption of IGZO TFT-based sensors in wearable technology."

###

References

DOI

10.1016/j.wees.2024.09.001

Original Source URL

https://doi.org/10.1016/j.wees.2024.09.001

Funding information

This work was supported by the National Key Research and Development Programme of China (Grant no. 2024YFE0100400), the National Natural Science Foundation of China (Grant no. 22305036), the Natural Science Foundation of Jiangsu Province (Grant no. BK20220815) and the Fundamental Research Funds for the Central Universities (Grant no. 4006002302). Y. S. would like to thank the Natural Science Research Key Project of the Education Department of Anhui Province (2022AH051377) and the Doctoral Scientific Research Foundation of Suzhou University (2021BSK008) for providing funding.

Journal

Wearable Electronics

Paper title: Nanofibrous metal oxide semiconductor for sensory face masks
Attached files
  • Igzo nanofibre-based sensors are integrated with a flexible circuit to create a sensory face mask, thus featuring wireless and real-time monitoring capabilities.
15/11/2024 TranSpread
Regions: North America, United States, Asia, China, South Korea
Keywords: Applied science, Technology

Disclaimer: AlphaGalileo is not responsible for the accuracy of news releases posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Testimonials

For well over a decade, in my capacity as a researcher, broadcaster, and producer, I have relied heavily on Alphagalileo.
All of my work trips have been planned around stories that I've found on this site.
The under embargo section allows us to plan ahead and the news releases enable us to find key experts.
Going through the tailored daily updates is the best way to start the day. It's such a critical service for me and many of my colleagues.
Koula Bouloukos, Senior manager, Editorial & Production Underknown
We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet

We Work Closely With...


  • BBC
  • The Times
  • National Geographic
  • The University of Edinburgh
  • University of Cambridge
  • iesResearch
Copyright 2024 by AlphaGalileo Terms Of Use Privacy Statement