Vultures and artificial intelligence(s) as death detectors: GAIA develops a high-tech approach for wildlife research and conservation
en-GBde-DEes-ESfr-FR

Vultures and artificial intelligence(s) as death detectors: GAIA develops a high-tech approach for wildlife research and conservation


In order to use remote locations to record and assess the behaviour of wildlife and environmental conditions, the GAIA Initiative developed an artificial intelligence (AI) algorithm that reliably and automatically classifies behaviours of white-backed vultures using animal tag data. As scavengers, vultures always look for the next carcass. With the help of tagged animals and a second AI algorithm, the scientists can now automatically locate carcasses across vast landscapes. The algorithms described in a recently published article in the “Journal of Applied Ecology” are therefore key components of an early warning system that can be used to quickly and reliably recognise critical changes or incidents in the environment such as droughts, disease outbreaks or the illegal killing of wildlife.

The GAIA Initiative is an alliance of research institutes, conservation organisations and enterprises with the aim of creating a high-tech early warning system for environmental changes and critical ecological incidents. The new AI algorithms were developed by the Leibniz Institute for Zoo and Wildlife Research (Leibniz-IZW) in cooperation with the Fraunhofer Institute for Integrated Circuits IIS and the Tierpark Berlin.

The death of wildlife is an important process in ecosystems – regardless whether this is a regular case, such as the successful hunt of a predator, or an exceptional case caused by the outbreak of a wildlife disease, the contamination of the landscape with environmental toxins or illegal killing by people. For the investigation of mammalian species communities and ecosystems it is therefore important to systematically record and analyse these regular and exceptional cases of mortality. In order to achieve this, the GAIA Initiative makes use of the natural abilities of white-backed vultures (Gyps africanus) in combination with highly developed biologging technologies and artificial intelligence. “This combination of three forms of intelligence ­– animal, human and artificial – is the core of our new approach with which we aim to make use of the impressive knowledge that wildlife has about ecosystems”, says Dr Jörg Melzheimer, GAIA project head and scientist at the Leibniz-IZW.

Vultures are perfectly adapted by millions of years of evolution to detect carcasses across vast landscapes quickly and reliably. They have outstanding eye-vision and sophisticated communication that allows them to monitor very large areas of land when many individuals work together. Vultures thus fulfil an important ecological role by cleaning landscapes of carrion and containing the spread of wildlife diseases. “For us as wildlife conservation scientists, the knowledge and skills of vultures as sentinels are very helpful to be able to quickly recognise problematic exceptional cases of mortality and initiate appropriate responses”, says Dr Ortwin Aschenborn, GAIA project head alongside Melzheimer at the Leibniz-IZW. “In order to use vulture knowledge, we need an interface – and at GAIA, this interface is created by combining animal tags with artificial intelligence.”

The animal tags with which GAIA equipped white-backed vultures in Namibia record two groups of data. The GPS sensor provides the exact location of the tagged individual at a specific point in time. The so-called ACC sensor (ACC is short for acceleration) stores detailed movement profiles of the tag – and thus of the animal – along the three spatial axes at the exact same time. Both groups of data are used by the artificial intelligence algorithms developed at the Leibniz-IZW. “Every behaviour is represented by specific acceleration patterns and thus creates specific signatures in the ACC data of the sensors”, explains wildlife biologist and AI specialist Wanja Rast from the Leibniz-IZW. “In order to recognise these signatures and reliably assign them to specific behaviours, we trained an AI using reference data. These reference data come from two white-backed vultures that we fitted with tags at Tierpark Berlin and from 27 wild vultures fitted with tags in Namibia.” In addition to the ACC data from the tags, the scientists recorded data on the behaviour of the animals – in the zoo through video recordings and in the field by observing the animals after they had been tagged. “In this way, we obtained around 15,000 data points of ACC signatures ascribed to a verified, specific vulture behaviour. These included active flight, gliding, lying, feeding and standing. This data set enabled us to train a so-called support vector machine, an AI algorithm that assigns ACC data to specific behaviours with a high degree of reliability”, explains Rast.

In a second step, the scientists combined the behaviour thus classified with the GPS data from the tags. Using algorithms for spatial clustering, they identified locations where certain behaviours occurred more frequently. In this way, they obtained spatially and temporally finely resolved locations where vultures fed. “The GAIA field scientists and their partners in the field were able to verify more than 500 of suspected carcass locations derived from the sensor data, as well as more than 1300 clusters of other non-carcass behaviours”, says Aschenborn. The field-verified carcass locations ultimately served to establish vulture feeding site signatures in the scientists’ final AI training dataset – this algorithm indicates with high precision locations where an animal has most likely died and a carcass is on the ground. “We could predict carcass locations with an impressive 92 percent probability and so demonstrated that a system which combines vulture behaviour, animal tags and AI is very useful for large-scale monitoring of animal mortality”, says Aschenborn.

This AI-based behaviour classification, carcass detection and carcass localisation are key components of the GAIA early warning system for critical changes or incidents in the environment. “Until now, this methodological step has been carried out in the GAIA data lab at the Leibniz-IZW in Berlin”, says Melzheimer. “But with the new generation of animal tags developed by our consortium, AI analyses are implemented directly on the tag. This will provide reliable information on whether and where an animal carcass is located without prior data transfer in real time without any loss of time.” The transfer of all GPS and ACC raw data is no longer necessary, allowing data communication with a significantly lower bandwidth to transmit the relevant information. This makes it possible to use a satellite connection instead of terrestrial GSM networks, which guarantees coverage even in remote wilderness regions completely independent of local infrastructure. Even at the most remote locations, critical changes or incidents in the environment – such as disease outbreaks, droughts or illegal killing of wildlife – could then be recognised without delay.

In recent decades, the populations of many vulture species declined sharply and are now acutely threatened with extinction. The main causes are the loss of habitat and food in landscapes shaped by humans as well as a high number of direct or indirect incidences of poisoning. The population of the white-backed vulture, for example, declined by around 90 percent in just three generations – equivalent to an average decline of 4 percent per year. “Owing to their ecological importance and rapid decline, it is essential to significantly improve our knowledge and understanding of vultures in order to protect them”, says Aschenborn. “Our research using AI-based analysis methods will not only provide us with insights into ecosystems. It will also increase our knowledge of how vultures communicate, interact and cooperate, forage for food, breed, rear their young and pass on knowledge from one generation to the next.” GAIA has so far fitted more than 130 vultures in different parts of Africa with tags, most of them in Namibia. Until today, the scientists analysed more than 95 million GPS data points and 13 billion ACC records.
Rast W, Portas R, Shatumbu GI, Berger A, Cloete C, Curk T, Götz T, Aschenborn OHK, Melzheimer J (2024): Death detector: Using vultures as sentinels to detect carcasses by combining bio-logging and machine learning. Journal of Applied Ecology. DOI: 10.1111/1365-2664.14810
Attached files
  • Graphical abstract and illustration showing the steps of the AI development conducted with vultures under human care and wild vultures (Illustration by Clara C. Anders)
  • White-backed vultures close to a carcass in Uganda (photo by Jon A. Juarez)
  • White-backed vultures and a jackal at a carcass (photo by Jan Zwilling)
  • GAIA scientist and Tierpark keeper with a tagged vulture for AI training data acquisition in the Tierpark Berlin (photo by Jan Zwilling)
  • GAIA scientist installing a camera to record vulture behaviour in the Tierpark Berlin as training data for AI development (photo by Jan Zwilling)
  • AI data scientists and wildlife biologists at the Leibniz-IZW I3 lab (photo by Jon A. Juarez)
  • A vulture's view into the ecosystem (composite image, photos by Jon A. Juarez)
Regions: Europe, Germany, Africa, Namibia
Keywords: Science, Environment - science, Life Sciences

Disclaimer: AlphaGalileo is not responsible for the accuracy of news releases posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Testimonials

For well over a decade, in my capacity as a researcher, broadcaster, and producer, I have relied heavily on Alphagalileo.
All of my work trips have been planned around stories that I've found on this site.
The under embargo section allows us to plan ahead and the news releases enable us to find key experts.
Going through the tailored daily updates is the best way to start the day. It's such a critical service for me and many of my colleagues.
Koula Bouloukos, Senior manager, Editorial & Production Underknown
We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet

We Work Closely With...


  • BBC
  • The Times
  • National Geographic
  • The University of Edinburgh
  • University of Cambridge
  • iesResearch
Copyright 2024 by AlphaGalileo Terms Of Use Privacy Statement