Supercharging hydrogen production: NiPS3's vacancy trick
en-GBde-DEes-ESfr-FR

Supercharging hydrogen production: NiPS3's vacancy trick

26/11/2024 TranSpread

Hydrogen evolution is a cornerstone of clean energy, playing a pivotal role in producing hydrogen fuel. However, traditional catalysts like platinum are prohibitively expensive, driving the need for alternatives. Transition metal phosphorus trichalcogenides, such as NiPS3, present a promising option due to their unique structure. Yet, their natural limitations—low catalytic activity and basal plane inertness—have stalled practical applications. These challenges highlight the need for innovative defect engineering to unlock their full potential.

A team of researchers from Konkuk University addressed this issue in their study (DOI: 10.1016/j.esci.2023.100204), published in eScience on June, 2024. Using first-principles density functional theory (DFT), the team explored various defect configurations in NiPS3, including S mono-vacancies, Ni mono-vacancies, and combined NiS di-vacancies. They found that the co-formation of Ni and S vacancies not only reduced activation energy but also enhanced the efficiency of water dissociation and proton adsorption, positioning NiPS3 as a competitive alternative to platinum for hydrogen evolution reactions (HER).

The study delves deep into the mechanisms behind this breakthrough. Researchers discovered that S mono-vacancies facilitated water adsorption through S-substitution-like binding, while Ni vacancies strengthened interactions with dissociated protons. Combined NiS di-vacancies yielded the most remarkable improvements, achieving exothermic reaction pathways and free energy changes comparable to platinum. Electronic structure analysis revealed that these vacancies significantly altered the local density of states (LDOS), optimizing both thermodynamics and reaction kinetics. This synergy makes defect-engineered NiPS3 a promising, cost-effective catalyst for HER, showcasing how atomic-level design can revolutionize material performance in energy applications.

"Defect engineering on NiPS3 opens new frontiers in hydrogen evolution catalysis," said Prof. Ki Chul Kim, lead researcher. "Our findings demonstrate how carefully designed atomic vacancies can dramatically enhance catalytic efficiency, paving the way for scalable and affordable hydrogen production."

Beyond HER, this breakthrough has implications for other catalytic processes, such as oxygen reduction and CO₂ reduction. With further refinement, NiPS3 could drive transformative advancements in clean energy technologies, reducing costs and accelerating the global shift to a hydrogen economy. This research sets a new benchmark in leveraging atomic defects to develop high-performance, sustainable catalysts for the energy challenges of tomorrow.

###

References

DOI

10.1016/j.esci.2023.100204

Original Source URL

https://doi.org/10.1016/j.esci.2023.100204

Funding information

This work was supported by the National Research Foundation of Korea (NRF), funded by the Ministry of Science and ICT (NRF-2020R1A2C1009177). This work was also supported in part by Human Resources Development Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Ministry of Trade, Industry and Energy, Republic of Korea (No. RS-2023-00237035).

About eScience

eScience is an open access journal publishing the latest scientific and technological research emerging from interdisciplinary fields related to energy, electrochemistry, electronics and the environment. It focuses on delivering critical insights and highlighting innovation. Original, important or general interest contributions covering a diverse range of topics are considered.

Paper title: Unlocking power of neighboring vacancies in boosting hydrogen evolution reactions on two-dimensional NiPS3 monolayer
Attached files
  • Defect-Engineered NiPS₃ Monolayer for Enhanced Hydrogen Evolution. This illustration depicts the catalytic enhancement of hydrogen evolution reactions (HER) achieved through defect engineering in NiPS₃ monolayers. Strategic creation of Ni and S vacancies facilitates water dissociation and proton adsorption, significantly boosting hydrogen production efficiency.
26/11/2024 TranSpread
Regions: Asia, South Korea, North America, United States
Keywords: Science, Chemistry

Disclaimer: AlphaGalileo is not responsible for the accuracy of news releases posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Testimonials

For well over a decade, in my capacity as a researcher, broadcaster, and producer, I have relied heavily on Alphagalileo.
All of my work trips have been planned around stories that I've found on this site.
The under embargo section allows us to plan ahead and the news releases enable us to find key experts.
Going through the tailored daily updates is the best way to start the day. It's such a critical service for me and many of my colleagues.
Koula Bouloukos, Senior manager, Editorial & Production Underknown
We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet

We Work Closely With...


  • BBC
  • The Times
  • National Geographic
  • The University of Edinburgh
  • University of Cambridge
  • iesResearch
Copyright 2024 by AlphaGalileo Terms Of Use Privacy Statement