Cellular “power plants” control inflammation
en-GBde-DEes-ESfr-FR

Cellular “power plants” control inflammation


Whether cells in the human body survive or die under stress depends, among other things, on their mitochondria. Scientists at the Faculty of Medicine at the University of Freiburg have now shown that a sudden stop in energy production in these cell “power plants” prevents normal cell death or so-called apoptosis and instead triggers an inflammatory response. The results of this research were published in the journal Immunity on 20 November 2024.

“We found that mitochondria provide a kind of decision-making aid: they regulate whether a cell undergoes clean, silent apoptosis or releases pro-inflammatory messenger substances,” explains Prof. Dr Olaf Groß, head of the study, a scientist at the Institute of Neuropathology at the Medical Center – University of Freiburg and a member of the Cluster of Excellence CIBSS – Centre for Integrative Biological Signalling Studies at the University of Freiburg. “This finding helps us to better understand how the body maintains a balance between cell protection and defence mechanisms. This could open up new avenues for the treatment of inflammatory diseases.” The research work was funded as part of several collaborative research centres at the University of Freiburg.

A complex interplay for good health

The universal “fuel source” for cellular activity is ATP (adenosine triphosphate). If the ATP in the mitochondria drops sharply, a protein important for apoptosis, known as cytochrome c, remains trapped in the mitochondria and the cell does not die, even if it receives the signal to do so from outside. Instead, the mitochondria activate mechanisms that trigger an inflammatory response, which puts the tissue on alert and prepares it for a possible threat.

The researchers have now discovered that a special “sensor” in the cells, known as NLRP3, is activated when the mitochondria cease energy production. However, a second signal from other areas of the cell is needed to activate the NLRP3 sensor. This so-called “two-signal mechanism” ensures that inflammation is only triggered in the event of serious danger, thus protecting healthy cells. This enables the body to react to threats in a targeted manner while at the same time preventing unnecessary inflammation that could damage the tissue

New options for treating inflammatory diseases

This discovery could be helpful for the treatment of diseases in which inflammatory processes play a role – such as gout, type 2 diabetes or severe cases of COVID-19. “In the future, drugs could be specifically designed to mitochondria or the activation of NLRP3 in order to better control inflammation and, on the one hand, to prevent damage to healthy tissue and, on the other, to promote the immune response to infection or the rejection of cancer by the immune system,” says Groß.

Saller, Benedikt S. et al. (2024): Acute suppression of mitochondrial ATP production prevents apoptosis and provides an essential signal for NLRP3 inflammasome activation. Immunity DOI: 10.17632/jrdrx955cn.1
Attached files
  • Prof. Dr. Olaf Groß. Photo: Jürgen Gocke / University of Freiburg
Regions: Europe, Germany
Keywords: Science, Life Sciences

Disclaimer: AlphaGalileo is not responsible for the accuracy of news releases posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Testimonials

For well over a decade, in my capacity as a researcher, broadcaster, and producer, I have relied heavily on Alphagalileo.
All of my work trips have been planned around stories that I've found on this site.
The under embargo section allows us to plan ahead and the news releases enable us to find key experts.
Going through the tailored daily updates is the best way to start the day. It's such a critical service for me and many of my colleagues.
Koula Bouloukos, Senior manager, Editorial & Production Underknown
We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet

We Work Closely With...


  • BBC
  • The Times
  • National Geographic
  • The University of Edinburgh
  • University of Cambridge
  • iesResearch
Copyright 2024 by AlphaGalileo Terms Of Use Privacy Statement