In Silico Analysis of Cross-Species Sequence Variability in Host Interferon Antiviral Pathway Proteins and SARS-CoV-2 Susceptibility
en-GBde-DEes-ESfr-FR

In Silico Analysis of Cross-Species Sequence Variability in Host Interferon Antiviral Pathway Proteins and SARS-CoV-2 Susceptibility

27/11/2024 Compuscript Ltd

https://www.scienceopen.com/hosted-document?doi=10.15212/ZOONOSES-2024-0028
Announcing a new article publication for Zoonoses journal. Zoonotic transmission of severe acute respiratory coronavirus 2 (SARS-CoV-2) has been found to result in infections in more than 30 mammalian species. The SARS-CoV-2 spike protein binds to the host’s angiotensin converting enzyme 2 (ACE2) cell surface receptor to gain entry into the cell. ACE2 protein sequence conservation has therefore been evaluated across species, and species with amino acid substitutions in ACE2 were ranked low for susceptibility to SARS-CoV-2 infection. However, many of these species have become infected by the virus.
This study investigated the conservation of 24 host protein targets, including the entry proteins ACE2 and transmembrane serine protease 2 (TMPRSS2); 21 proteins in the interferon-I (IFN-I) antiviral response pathway; and tethrin, a protein that suppresses new virion release from cells. Bioinformatics approaches including Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS), Molecular Operating Environment (MOE), and iCn3D software were used to compare protein sequence similarity, conserved domains, and critical amino acids for host-viral protein-protein interactions. The types of bonding interactions were scored, and the results were compared with empirical data indicating which species have or have not become infected.
This pathway approach revealed that 1) 13 proteins were conserved, whereas five lacked data sufficient to determine specific critical amino acids; 2) variation in protein-protein interfaces is tolerated for many amino acid substitutions, and these substitutions follow taxonomic clades rather than correlating with empirically determined species infection status; and 3) four proteins (MDA5, NEMO, IRF3, and ISG15) contained potential domains or specific amino acids whose substitution may result in PPI disruption.
This work provides evidence that certain substitutions in four IFN-I antiviral pathway proteins appear able to disrupt interactions and may be distinctive to resistant species, thus potentially aiding in determining species’ likelihood of transmitting SARS-CoV-2.
# # # # # #
Zoonoses is fully open access journal for research scientists, physicians, veterinarians, and public health professionals working on diverse disciplinaries of zoonotic diseases. Please visit https://zoonoses-journal.org/ to learn more about the journal.

Zoonoses is now open for submissions; articles can be submitted online at https://mc04.manuscriptcentral.com/zoonoses
There are no author submission or article processing fees.

Editorial Board: https://zoonoses-journal.org/index.php/editorial-board/

Zoonoses is available on ScienceOpen (https://www.scienceopen.com/search#collection/839df240-327f-47dd-b636-9b728dff9700).

Follow Zoonoses on Twitter @ZoonosesJ; Facebook (https://www.facebook.com/Zoonoses-Journal-100462755574114 ) and LinkedIn (https://www.linkedin.com/company/zoonoses/)

eISSN 2737-7474
ISSN 2737-7466
# # # # # #
Sally A. Mayasich, Peter G. Schumann and Maxwell Botz et al. In Silico Analysis of Cross-Species Sequence Variability in Host Interferon Antiviral Pathway Proteins and SARS-CoV-2 Susceptibility. Zoonoses. 2024. Vol. 4(1). DOI: 10.15212/ZOONOSES-2024-0028
Sally A. Mayasich, Peter G. Schumann and Maxwell Botz et al. In Silico Analysis of Cross-Species Sequence Variability in Host Interferon Antiviral Pathway Proteins and SARS-CoV-2 Susceptibility. Zoonoses. 2024. Vol. 4(1). DOI: 10.15212/ZOONOSES-2024-0028
27/11/2024 Compuscript Ltd
Regions: Europe, Ireland
Keywords: Health, Medical

Disclaimer: AlphaGalileo is not responsible for the accuracy of news releases posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Testimonials

For well over a decade, in my capacity as a researcher, broadcaster, and producer, I have relied heavily on Alphagalileo.
All of my work trips have been planned around stories that I've found on this site.
The under embargo section allows us to plan ahead and the news releases enable us to find key experts.
Going through the tailored daily updates is the best way to start the day. It's such a critical service for me and many of my colleagues.
Koula Bouloukos, Senior manager, Editorial & Production Underknown
We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet

We Work Closely With...


  • BBC
  • The Times
  • National Geographic
  • The University of Edinburgh
  • University of Cambridge
  • iesResearch
Copyright 2024 by AlphaGalileo Terms Of Use Privacy Statement