World’s Smallest Molecular Machine: Reversible Sliding Motion in Ammonium-Linked Ferrocene
en-GBde-DEes-ESfr-FR

World’s Smallest Molecular Machine: Reversible Sliding Motion in Ammonium-Linked Ferrocene

12/12/2024 Chiba University

Artificial molecular machines, nanoscale machines consisting of a few molecules, offer the potential to transform fields involving catalysts, molecular electronics, medicines, and quantum materials. These machines operate by converting external stimuli, like electrical signals, into mechanical motion at the molecular level. Ferrocene, a special drum-shaped molecule composed of an iron (Fe) atom sandwiched between two five-membered carbon rings, is a promising foundational molecule for molecular machinery. Its discovery earned the Nobel Prize in Chemistry in 1973, and it has since become a cornerstone in the study of molecular machines.

What makes ferrocene so appealing is its unique property: A change in the electronic state of the Fe ion, from Fe+2 to Fe+3, causes its two carbon rings to rotate by about 36° around the central molecular axis. Controlling this electronic state by an external electrical signal could enable precisely controlled molecular rotation. However, a major hurdle in its practical application is that it readily decomposes when adsorbed onto the surface of substrates, especially flat noble metal substrates, near room temperature, even under ultra-high vacuum conditions. A definitive method for anchoring isolated ferrocene molecules on a surface without decomposition has not been found, until now.

In a groundbreaking study, a research team led by Associate Professor Toyo Kazu Yamada from the Graduate School of Engineering at Chiba University, Japan, including Professor Peter Krüger from the Faculty of Engineering at Chiba University, Professor Satoshi Kera of the Institute for Molecular Science, Japan, and Professor Masaki Horie of National Tsing Hua University, Taiwan, has finally overcome this challenge. They have successfully created the world’s smallest electrically controlled molecular machine. “In this study, we successfully stabilized and adsorbed ferrocene molecules onto a noble metal surface by pre-coating it with a two-dimensional crown ether molecular film. This is the first direct experimental evidence of ferrocene-based molecular motion at the atomic scale,” remarks Prof. Yamada. Their findings were published in the journal Small on November 30, 2024.

To stabilize the ferrocene molecules, the team first modified them by adding ammonium salts, forming ferrocene ammonium salts (Fc-amm). This improved durability and ensured that the molecules could be securely fixed to the surface of the substrate. These new molecules were then anchored onto a monolayer film made up of crown ether cyclic molecules, which were placed on a flat copper substrate. Crown ether cyclic molecules have a unique structure with a central ring that can hold a variety of atoms, molecules, and ions. Prof. Yamada explains, “Previously, we found that crown ether cyclic molecules can form a monolayer film on flat metal substrates. This monolayer trap the ammonium ions of Fc-amm molecules in the central ring of crown ether molecules, preventing the decomposition of ferrocene by acting as a shield against the metal substrate.”

Next, the team placed a scanning tunneling microscopy (STM) probe on top of the Fc-amm molecule and applied an electrical voltage, which caused a lateral sliding motion of the molecules. Specifically, on applying a voltage of −1.3 volts, a hole (vacant space left by an electron) enters the electronic structure of the Fe ion, switching it from Fe2+ to Fe3+ state. This triggered the rotation of the carbon rings accompanied by a lateral sliding motion of the molecule. Density functional theory calculations showed that this lateral sliding motion occurs due to the Coulomb repulsion between the positively charged Fc-amm ions. Importantly, on removing the voltage, the molecule returns to its original position, demonstrating that the motion is reversible and can be precisely controlled using electrical signals.

This study opens exciting possibilities for ferrocene-based molecular machinery. Their ability to perform specialized tasks at the molecular level can lead to revolutionary innovations across many scientific and industrial fields, including precision medicine, smart materials, and advanced manufacturing,” says Prof. Yamada, highlighting the potential applications of their technology.

In summary, this study presents a crucial breakthrough in the design and control of molecular machines that can lead to significant advancements in numerous fields.


About Associate Professor Toyo Kazu Yamada
Dr. Toyo Kazu Yamada is currently an Associate Professor at the Graduate School of Engineering at Chiba University, Japan. He earned his Ph.D. (double degree) in 2004 from Radboud University Nijmegen, The Netherlands, and Gakushuin University, Japan. Additionally, he served as a Humboldt research fellow at the Karlsruhe Institute of Technology (KIT), Germany, from 2008 to 2010. His research primarily focuses on various aspects of materials science, encompassing single magnetic atoms and films, organic molecules, graphene nanoribbons, Fe/MgO interfaces, nanomagnets on an s-wave superconductor, and life molecules. His current research focuses on the functionality of a single magnetic atom or molecule on the surface of solid materials, such as magnetic substances and superconductors, as a quantum bit or quantum sensor for next-generation quantum computers.

Funding:
This work was supported by JSPS KAKENHI Grant Numbers 17K19023, 23H02033, and 23H05461, the Murata Science Foundation, Shorai Foundation for Science and Technology, TEPCO Memorial Foundation, Cooperative Research by Institute for Molecular Science (IMS program 21-205), and Casio Science Foundation.
Reference:
Title of original paper: Reversible Sliding Motion by Hole-Injection in Ammonium-Linked Ferrocene, Electronically Decoupled from Noble Metal Substrate by Crown-Ether Template Layer
Authors: Fumi Nishino1, Peter Krüger1,2, Chi-Hsien Wang3, Ryohei Nemoto1, Yu-Hsin Chang3, Takuya Hosokai4, Yuri Hasegawa5, Keisuke Fukutan5, Satoshi Kera5, Masaki Horie3, and Toyo Kazu Yamada1,2
Affiliations: 1Department of Materials Science, Chiba University
2Molecular Chirality Research Centre, Chiba University
3Department of Chemical Engineering, National Tsing Hua University
4National Institute of Advanced Industrial Science and Technology, National Metrology Institute of Japan
5Institute for Molecular Science
Journal: Small
DOI: 10.1002/smll.20240821
Attached files
  • Image title : Lateral sliding of the ferrocene-based molecular machineImage caption: The complex of ammonium-linked ferrocene (Fc-amm) and crown ether is assembled on a Cu(111) surface, and its sliding motion is activated by hole injection into the ferrocene group using scanning tunneling microscopy (STM). Image credit & source link: Toyo Kazu Yamada from Chiba University Image license: Original contentUsage Restriction: You are free to share and adapt the material. Credit must be given to the creator.
12/12/2024 Chiba University
Regions: Asia, Japan
Keywords: Applied science, Technology, Engineering, Nanotechnology

Disclaimer: AlphaGalileo is not responsible for the accuracy of news releases posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Testimonials

For well over a decade, in my capacity as a researcher, broadcaster, and producer, I have relied heavily on Alphagalileo.
All of my work trips have been planned around stories that I've found on this site.
The under embargo section allows us to plan ahead and the news releases enable us to find key experts.
Going through the tailored daily updates is the best way to start the day. It's such a critical service for me and many of my colleagues.
Koula Bouloukos, Senior manager, Editorial & Production Underknown
We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet

We Work Closely With...


  • BBC
  • The Times
  • National Geographic
  • The University of Edinburgh
  • University of Cambridge
  • iesResearch
Copyright 2024 by AlphaGalileo Terms Of Use Privacy Statement