"AI-Based Tool Offers Exciting Advancement in Pancreatic Cancer Diagnostics," Researchers Find
en-GBde-DEes-ESfr-FR

"AI-Based Tool Offers Exciting Advancement in Pancreatic Cancer Diagnostics," Researchers Find

12/12/2024 Elsevier

A study in The American Journal of Pathology details a promising method to classify pancreatic ductal adenocarcinoma subtypes, enabling quicker, more accessible diagnoses and subtyping, leading to improved patient outcomes through timely, tailored treatments

Philadelphia, December 12, 2024 Researchers have successfully developed a deep learning model that classifies pancreatic ductal adenocarcinoma (PDAC), the most common form of pancreatic cancer, into molecular subtypes using histopathology images. This approach achieves high accuracy and offers a rapid, cost-effective alternative to current methods that rely on expensive molecular assays. The new study in The American Journal of Pathology, published by Elsevier, holds promise to advance personalized treatment strategies and improve patient outcomes.

PDACs have recently surpassed breast cancer as the third leading cause of cancer mortality in Canada and the United States. Surgery can cure approximately one-fifth of PDAC cases if they are detected early. Although surgical intervention is provided to these patients, the five-year survival rate remains at 20%. Approximately 80% of patients have already developed metastatic disease at diagnosis, and most of these patients succumb to the disease within a year.

The aggressiveness of PDAC poses a formidable challenge when using sequencing technologies to determine a patient care plan. The disease’s rapid clinical deterioration demands swift action to identify eligible individuals for targeted therapies and inclusion in clinical trials. However, current turnaround times for molecular profiling, which range from 19 to 52 days from the time of biopsy, fall short of meeting these time-sensitive demands.

Co-lead investigator David Schaeffer, MD, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver General Hospital, and Pancreas Centre BC, explains, "More and more potentially actionable subtypes to personalize treatment for pancreatic cancer patients are being discovered. However, the subtyping is still entirely based on genomic methodology based on DNA and RNA extracted from tissue. This methodology is outstanding if sufficient tissue is present, which is not always the case for PDAC tumors given the difficult anatomical location of this organ. Our study provides a promising method to cost-effectively and rapidly classify PDAC molecular subtypes based on routine hematoxylin-eosin–stained slides, potentially leading to more effective clinical management of this disease."

The study involved training deep learning AI models on whole-slide pathology images to identify the molecular subtypes of PDAC—basal-like and classical—using hematoxylin and eosin-(H&E) stained slides. H&E staining is a cost-effective and widely available technique that is routinely performed with fast turnaround times in pathology laboratories for diagnostics and prognostication. The models were trained on 97 slides from The Cancer Genome Atlas (TCGA) and tested on 110 slides from 44 patients in a local cohort. The best-performing model achieved an accuracy of 96.19% in identifying the classical and basal subtypes in the TCGA dataset and 83.03% on the local cohort, highlighting its robustness across different datasets.

Co-lead investigator Ali Bashashati, PhD, School of Biomedical Engineering, and Department of Pathology and Laboratory Medicine, University of British Columbia, notes, "The sensitivity and specificity of the model was 85% and 100%, respectively, making this AI tool a highly applicable tool for triaging patients for molecular testing. Also, the main achievement of this study is the fact that the AI model was able to detect the subtypes from biopsy images, making it a highly useful tool that can be deployed at the time of diagnosis."

Dr. Bashashati concludes, "This AI-based approach offers an exciting advancement in pancreatic cancer diagnostics, enabling us to identify key molecular subtypes rapidly and cost-effectively.”
“A Deep Learning Approach for the Identification of the Molecular Subtypes of Pancreatic Ductal Adenocarcinoma Based on Whole Slide Pathology Images,” by Pouya Ahmadvand, Hossein Farahani, David Farnell, Amirali Darbandsari, James Topham, Joanna Karasinska, Jessica Nelson, Julia Naso, Steven J.M. Jones, Daniel Renouf, David F. Schaeffer, and Ali Bashashati (https://doi.org/10.1016/j.ajpath.2024.08.006). It appears in The American Journal of Pathology, volume 194, issue 12 (December 2024), published by Elsevier. The article is openly available at https://ajp.amjpathol.org/article/S0002-9440(24)00325-0/fulltext.

12/12/2024 Elsevier
Regions: Europe, Netherlands, North America, Canada, United States
Keywords: Health, Medical, Science, Life Sciences, Applied science, Artificial Intelligence

Disclaimer: AlphaGalileo is not responsible for the accuracy of news releases posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Testimonials

For well over a decade, in my capacity as a researcher, broadcaster, and producer, I have relied heavily on Alphagalileo.
All of my work trips have been planned around stories that I've found on this site.
The under embargo section allows us to plan ahead and the news releases enable us to find key experts.
Going through the tailored daily updates is the best way to start the day. It's such a critical service for me and many of my colleagues.
Koula Bouloukos, Senior manager, Editorial & Production Underknown
We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet

We Work Closely With...


  • BBC
  • The Times
  • National Geographic
  • The University of Edinburgh
  • University of Cambridge
  • iesResearch
Copyright 2024 by AlphaGalileo Terms Of Use Privacy Statement