Oxygen and chlorine evolution without noble metals: Electrode potential transforms surfaces
en-GBde-DEes-ESfr-FR

Oxygen and chlorine evolution without noble metals: Electrode potential transforms surfaces


MXenes are a class of two-dimensional materials that were only discovered in 2011. Theoretical studies previously predicted that they would not be catalytically active in anodic processes. Researchers led by Prof. Dr. Kai S. Exner, head of the Department of Theoretical Catalysis and Electrochemistry at the University of Duisburg-Essen (UDE), have now disproved this theory using multiscale modeling.

The scientists discovered that when an electrode potential is applied, the MXene surface changes into a brush-like structure: atoms of non-noble metals migrate out and form so-called "SAC-like structures" (single atom catalyst-like). These catalysts mediate two important reactions, namely the oxygen evolution and chlorine evolution reactions.

The result is a material whose surface has catalytically active sites without the addition of precious metals. 'We concluded that MXenes behave similarly to enzymes in an electrochemical environment: by applying an electrode potential, their active sites are created directly in the process,' explains Exner.

The team was also able to show that the resulting SAC-like structures are selective: if water and chloride ions are in the reaction environment at the same time, only gaseous chlorine is formed. The formation of this base chemical is a key process in the chemical industry, which produces more than 70 million tons of gaseous chlorine (Cl2) per year. Cl2 is required for the production of pharmaceuticals, plastics, batteries, and for water treatment. However, when only water is available in the electrolyte, the active MXene surface facilitates the production of gaseous oxygen (O2) by means of oxygen evolution – an important step in the formation of green hydrogen in an electrolyzer.

This discovery can greatly simplify the production of single-atom catalysts. The elimination of expensive precious metals also reduces costs and dependencies.

The study also involved researchers from the University of Barcelona (Spain) and scientists from Ruhr Explores Solvation (RESOLV). RESOLV is a cluster of excellence of the University Alliance Ruhr.

* Journal of the American Chemical Society
MXenes Spontaneously Form Active and Selective Single-Atom Centers under Anodic Polarization Conditions
Journal of the American Chemical Society
December 16, 2024
https://doi.org/10.1021/jacs.4c08518
Regions: Europe, Germany, Spain
Keywords: Science, Chemistry, Energy

Disclaimer: AlphaGalileo is not responsible for the accuracy of news releases posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Testimonials

For well over a decade, in my capacity as a researcher, broadcaster, and producer, I have relied heavily on Alphagalileo.
All of my work trips have been planned around stories that I've found on this site.
The under embargo section allows us to plan ahead and the news releases enable us to find key experts.
Going through the tailored daily updates is the best way to start the day. It's such a critical service for me and many of my colleagues.
Koula Bouloukos, Senior manager, Editorial & Production Underknown
We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet

We Work Closely With...


  • BBC
  • The Times
  • National Geographic
  • The University of Edinburgh
  • University of Cambridge
  • iesResearch
Copyright 2024 by AlphaGalileo Terms Of Use Privacy Statement