Histone modification important for correct blood cell formation
en-GBde-DEes-ESfr-FR

Histone modification important for correct blood cell formation


LMU molecular biologist Gunnar Schotta decodes the epigenetic silencing of problematic retroviral gene sequences.

While each cell contains the complete genetic blueprint of an organism, chemical marks on the DNA – so-called epigenetic modifications – control which genes are active when and where. A team led by molecular biologist Professor Gunnar Schotta from LMU’s Biomedical Center has now investigated how SETDB1 works. This enzyme is able to silence specific DNA sections by epigenetically modifying histone proteins that package the DNA. These modifications ensure that the DNA is densely packed as heterochromatin, which reduces the accessibility of the genes.

“We’re especially interested in DNA sections that have been inserted by retroviruses in the course of evolution and then inherited,” says Schotta. Such endogenous retroviruses (ERVs) often contain binding sites for transcription factors – that is, proteins that read and activate genes. Although these sequences are normally inactive, they can affect gene activity under certain circumstances – hence their name of cryptic enhancers.

SETDB1 prevents retroviral sequences from becoming active by appending an epigenetic mark called H3K9me3 to the respective histones. “Surprisingly, our study shows that although the mark does not block the binding of transcription factors to these sites, it does suppress their activity,” says Schotta. Without SETDB1, this suppression is lacking, leading to abnormal gene expression in the vicinity of these cryptic enhancers. This impairs the formation of blood cells by disrupting the differentiation of hematopoietic stem cells, inducing excessive production of myeloid and red blood cells, and inhibiting the formation of B and T immune cells. “Our results clarify how important the regulation of cryptic enhancers is for controlling blood cell formation and cast a new light on the role of retroviral elements as potential disruptive factors in gene regulation,” concludes Schotta.
M. Kazerani et el.: Histone methyltransferase SETDB1 safeguards mouse fetal hematopoiesis by suppressing activation of cryptic enhancers. PNAS 2024. https://www.pnas.org/doi/10.1073/pnas.2409656121
Regions: Europe, Germany
Keywords: Science, Life Sciences

Disclaimer: AlphaGalileo is not responsible for the accuracy of news releases posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Testimonials

For well over a decade, in my capacity as a researcher, broadcaster, and producer, I have relied heavily on Alphagalileo.
All of my work trips have been planned around stories that I've found on this site.
The under embargo section allows us to plan ahead and the news releases enable us to find key experts.
Going through the tailored daily updates is the best way to start the day. It's such a critical service for me and many of my colleagues.
Koula Bouloukos, Senior manager, Editorial & Production Underknown
We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet

We Work Closely With...


  • BBC
  • The Times
  • National Geographic
  • The University of Edinburgh
  • University of Cambridge
  • iesResearch
Copyright 2024 by AlphaGalileo Terms Of Use Privacy Statement