AI's new move: transforming skin cancer identification
en-GBde-DEes-ESfr-FR

AI's new move: transforming skin cancer identification

20/12/2024 TranSpread

Skin cancer remains the most common form of cancer worldwide, often presenting as benign skin conditions that are difficult to differentiate, even for experienced dermatologists. Misdiagnosis can lead to delayed treatments and worse outcomes, making the need for reliable, accurate diagnostic tools more urgent than ever. Early detection is critical, as it can dramatically improve a patient’s prognosis. This study aims to address the pressing challenge of accurately identifying skin cancer through advanced AI-driven diagnostic methods, enhancing the potential for early intervention and better patient outcomes.

Led by Aliyu Tetengi Ibrahim and his team at Ahmadu Bello University, this study (DOI: 10.1016/j.dsm.2024.10.002), published in Data Science and Management on November 2, 2024, introduces an innovative AI model that could revolutionize the way dermatologists detect skin cancer. By harnessing the power of transfer learning and test time augmentation (TTA), the team has developed a model that categorizes skin lesions into seven distinct categories. Their work represents a significant leap forward in dermatological research, offering new hope for improving diagnostic accuracy and patient care.

In this pioneering research, Ibrahim and his colleagues developed a sophisticated deep learning model that integrates five state-of-the-art transfer learning models to classify skin lesions into categories such as melanoma, basal cell carcinoma, and benign keratosis, among others. Trained on the expansive HAM10000 dataset of over 10,000 dermoscopic images, the model achieved an impressive 94.49% accuracy rate. A key innovation in this study is the use of TTA—a technique that artificially enlarges the dataset by applying random modifications to test images. This boosts the model’s ability to generalize across a wide range of skin lesions, improving diagnostic precision. The weighted ensemble approach, which combines the strengths of individual models, outperforms other current methods in the field, offering a powerful tool for dermatological diagnostics.

"The integration of deep learning in dermatology is not just an advancement; it's a necessity," says lead researcher Aliyu Tetengi Ibrahim. "Our model’s high accuracy rate can reduce the need for unnecessary biopsies and promote earlier detection, ultimately saving lives by helping dermatologists make more informed decisions. This breakthrough is a clear example of how AI can augment medical expertise and provide critical support in the fight against skin cancer."

The potential applications of this AI model in clinical settings are immense. It could streamline the diagnostic process, reduce healthcare costs, and enhance patient care, especially in regions with limited access to dermatological expertise. Integrating this technology into telemedicine platforms could democratize access to skin cancer diagnosis, bringing advanced medical care to underserved populations. By improving the accuracy of skin cancer detection, this research has the potential to reshape global healthcare, making life-saving diagnostics more accessible and affordable to people around the world.

###

References

DOI

10.1016/j.dsm.2024.10.002

Original Source URL

https://doi.org/10.1016/j.dsm.2024.10.002

About Data Science and Management (DSM)

Data Science and Management (DSM) is a peer-reviewed open access journal for original research articles, review articles and technical reports related to all aspects of data science and its application in the field of business, economics, finance, operations, engineering, healthcare, transportation, agriculture, energy, environment, sports, and social management. DSM was launched in 2021, and published quarterly by Xi'an Jiaotong University.

Paper title: Categorical classification of skin cancer using a weighted ensemble of transfer learning with test time augmentation
Attached files
  • The proposed model architecture. Note: TTA: test-time augmentation.
20/12/2024 TranSpread
Regions: North America, United States, Africa, Nigeria
Keywords: Health, Medical, Applied science, Artificial Intelligence

Disclaimer: AlphaGalileo is not responsible for the accuracy of news releases posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Testimonials

For well over a decade, in my capacity as a researcher, broadcaster, and producer, I have relied heavily on Alphagalileo.
All of my work trips have been planned around stories that I've found on this site.
The under embargo section allows us to plan ahead and the news releases enable us to find key experts.
Going through the tailored daily updates is the best way to start the day. It's such a critical service for me and many of my colleagues.
Koula Bouloukos, Senior manager, Editorial & Production Underknown
We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet

We Work Closely With...


  • BBC
  • The Times
  • National Geographic
  • The University of Edinburgh
  • University of Cambridge
  • iesResearch
Copyright 2024 by AlphaGalileo Terms Of Use Privacy Statement