Als „Die Forschungsuniversität in der Helmholtz-Gemeinschaft“ schafft und vermittelt das KIT Wissen für Gesellschaft und Umwelt. Ziel ist es, zu den globalen Herausforderungen maßgebliche Beiträge in den Feldern Energie, Mobilität und Information zu leisten. Dazu arbeiten rund 9 800 Mitarbeiterinnen und Mitarbeiter auf einer breiten disziplinären Basis in Natur-, Ingenieur-, Wirtschafts- sowie Geistes- und Sozialwissenschaften zusammen. Seine 22 300 Studierenden bereitet das KIT durch ein forschungsorientiertes universitäres Studium auf verantwortungsvolle Aufgaben in Gesellschaft, Wirtschaft und Wissenschaft vor. Die Innovationstätigkeit am KIT schlägt die Brücke zwischen Erkenntnis und Anwendung zum gesellschaftlichen Nutzen, wirtschaftlichen Wohlstand und Erhalt unserer natürlichen Lebensgrundlagen. Das KIT ist eine der deutschen Exzellenzuniversitäten.
Menschen weltweit mit sauberem Wasser zu versorgen, gehört zu den großen Herausforderungen der Gegenwart und Zukunft. In Abwässern finden sich verschiedene Mikroverunreinigungen, das heißt organische und anorganische Stoffe, die in geringen Konzentrationen auftreten, sich aber dennoch schädlich auf Mensch und Umwelt auswirken. Besondere Risiken gehen von endokrin wirksamen Substanzen aus, also solchen, die sich auf das Hormonsystem auswirken können, wie beispielsweise Steroidhormone. Diese sind unter anderem in Arzneimitteln und Empfängnisverhütungsmitteln weit verbreitet. Im Wasser lassen sie sich schwer nachweisen, können aber die Gesundheit des Menschen und das ökologische Gleichgewicht von Gewässern empfindlich stören.
Oxidation ermöglicht Abbau von Mikroverunreinigungen
Mit herkömmlichen Methoden der Wasseraufbereitung lassen sich Steroidhormone weder aufspüren noch entfernen. Als fortschrittlicher Ansatz ist die elektrochemische Oxidation (EO) zunehmend anerkannt: EO-Systeme bestehen aus einer Anode und einer Kathode, angeschlossen an eine externe Stromquelle. Die elektrische Energie der Elektroden wird verändert (moduliert), was zu einer Oxidation an der Anodenoberfläche führt und die Verunreinigungen abbaut. Elektrochemische Membranreaktoren (EMR) nutzen die Möglichkeiten der EO noch wirksamer: Als Durchflusselektrode dient eine leitende Membran, was den Stofftransport verbessert. Überdies sind aktive Stellen für die reagierenden Moleküle vollständig zugänglich.
Kohlenstoff-Nanoröhren besitzen einzigartige physikalische und chemische Eigenschaften
Forscherinnen am Institute for Advanced Membrane Technology (IAMT) des KIT haben zusammen mit Wissenschaftlerinnen und Wissenschaftlern an der University of California, Los Angeles, und an der Hebrew University of Jerusalem nun die schwer verständlichen Mechanismen in EMR weiter aufgeklärt: Wie die Forschenden in der Sonderausgabe „Water Treatment and Harvesting“ der Fachzeitschrift Nature Communications berichten, untersuchten sie den Abbau von Steroidhormon-Mikroverunreinigungen in einem EMR mit Kohlenstoffnanoröhren-Membran. Kohlenstoff-Nanoröhren (Carbon Nanotubes, CNT) weisen Durchmesser im Nanometerbereich auf und besitzen einzigartige physikalische und chemische Eigenschaften: „Ihre hohe Leitfähigkeit ermöglicht einen effizienten Elektronentransfer“, erklärt Andrea Iris Schäfer, Professorin für Wasser-Verfahrenstechnik und Leiterin des IAMT des KIT. „Dank ihrer Nanostruktur verfügen CNT über eine außerordentlich große Oberfläche und damit ein enormes Potenzial für die Adsorption verschiedener organischer Verbindungen, was nachfolgende elektrochemische Reaktionen erleichtert.“
In ihrer Studie untersuchten die Forschenden mit modernsten analytischen Methoden das komplexe Zusammenspiel von Adsorption und Desorption, elektrochemischen Reaktionen und der Bildung von Nebenprodukten in einem EMR. „Wir haben festgestellt, dass die vorangehende Adsorption von Steroidhormonen, das heißt deren Anreicherung an der Oberfläche der CNT, den nachfolgenden Abbau der Hormone nicht einschränkt“, berichtet Dr. Siqi Liu, Postdoc am IAMT. „Dies führen wir auf die schnelle Adsorption und den effektiven Stofftransport zurück.“ Der analytische Ansatz der Studie erleichtert auch das Bestimmen der den Hormonabbau begrenzenden Faktoren und sich verändernden Bedingungen. „Unsere Untersuchung klärt einige grundlegende Mechanismen in elektrochemischen Membranreaktoren auf und liefert wertvolle Erkenntnisse, um elektrochemische Strategien zur Beseitigung von Mikroverunreinigungen im Wasser weiterzuentwickeln“, fasst Schäfer zusammen. (or)
Regions: Europe, Germany
Keywords: Science, Chemistry, Environment - science, Applied science, Nanotechnology, Health, Environmental health