Smarter memory: next-generation RAM with reduced energy consumption
en-GBde-DEes-ESfr-FR

Smarter memory: next-generation RAM with reduced energy consumption

07/01/2025 Osaka University

Researchers from Osaka University introduced an innovative technology to lower power consumption for modern memory devices

Osaka, Japan – Numerous memory types for computing devices have emerged in recent years, aiming to overcome the limitations imposed by traditional random access memory (RAM). Magnetoresistive RAM (MRAM) is one such memory type which offers several advantages over conventional RAM, including its non-volatility, high speed, increased storage capacity and enhanced endurance. Although remarkable improvements have been made to MRAM devices, reducing energy consumption during data writing remains a critical challenge.

A study recently published in Advanced Science by researchers from Osaka University proposes a new technology for MRAM devices with lower-energy data writing. The proposed technology enables an electric-field-based writing scheme with reduced energy consumption compared to the present current-based approach, potentially providing an alternative to traditional RAM.

Conventional dynamic RAM (DRAM) devices have basic storage units consisting of transistors and capacitors. However, the stored data is volatile, meaning that energy input is required to retain the data. In contrast, MRAM uses magnetic states, such as the orientation of magnetization, to write and store data, enabling non-volatile data storage.

“As MRAM devices rely on a non-volatile magnetization state rather than a volatile charge state in capacitors, they are a promising alternative to DRAM in terms of their low power consumption in the standby state,” explains Takamasa Usami, lead author of the study.

The present MRAM devices generally require an electric current to switch the magnetization vectors of magnetic tunnel junctions, analogous to switching capacitor’s charge states in a DRAM device. However, a large electric current is needed to switch the magnetization vectors during the writing process. This results in inevitable Joule heating, leading to energy consumption.

To address the problem, the researchers have developed a new component for electric field controlling of MRAM devices. The key technology is a multiferroic heterostructure with magnetization vectors that can be switched by an electric field (Fig. 1). The response of the heterostructure to an electric field is basically characterized in terms of the converse magnetoelectric (CME) coupling coefficient; larger values indicate a stronger magnetization response.

The researchers previously reported a multiferroic heterostructure with a large CME coupling coefficient over 10-5 s/m. However, structural fluctuations in parts of the ferromagnetic layer (Co2FeSi) made it challenging to achieve the desired magnetic anisotropy, hindering reliable electric-field operation. To improve the stability of this configuration, the researchers developed a new technology for an insertion of an ultra-thin vanadium layer between the ferromagnetic and piezoelectric layers. As shown in Fig. 2, a clear interface was achieved by inserting the vanadium layer, leading to the reliable control of the magnetic anisotropy in the Co2FeSi layer. Also, the CME effect reached a value larger than that achieved with similar devices that did not include a vanadium layer.

The researchers also demonstrated that two different magnetic state can be reliably realized at zero electric field by changing the sweeping operation of the electric field. This means a non-volatile binary state can be intentionally achieved at zero electric field.

“Through precise control of the multiferroic heterostructures, two key requirements for implementing practical magnetoelectric (ME)-MRAM devices are satisfied, namely a non-volatile binary state with zero electric field, and a giant CME effect,” says Kohei Hamaya, senior author.

This research in spintronic devices could eventually be implemented on practical MRAM devices, enabling manufacturers to develop ME-MRAM, which is a low-power writing technology for a wide range of applications requiring persistent and safe memory.

###
The article “Artificial control of giant converse magnetoelectric effect in spintronic multiferroic heterostructure,” was published in Advanced Science at DOI: https://doi.org/10.1002/advs.202413566

Title: Artificial control of giant converse magnetoelectric effect in spintronic multiferroic heterostructure
Journal: Advanced Science
Authors: Takamasa Usami, Yuya Sanada, Shumpei Fujii, Shinya Yamada, Yu Shiratsuchi, Ryoichi Nakatani, and Kohei Hamaya
DOI: 10.1002/advs.202413566
Funded by: Japan Society for the Promotion of Science, Japan Science and Technology Agency, The Spintronics Research Network of Japan, Toyota Physical and Chemical Research Institute
Attached files
  • Fig. 1 Schematic of the interfacial multiferroic structure., Original content, Credit must be given to the creator., T. Usami
  • Fig. 2 Atomic image of the ferromagnetic Co2FeSi layer/atomic layer/piezoelectric layer interface. The structure on the left uses an Fe atomic layer, whereas the V layer, shown on the right, is clear, promoting the crystal orientation of the ferromagnetic Co2FeSi layer above., Original content, Credit must be given to the creator., T. Usami
07/01/2025 Osaka University
Regions: Asia, Japan
Keywords: Applied science, Engineering

Disclaimer: AlphaGalileo is not responsible for the accuracy of news releases posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Testimonials

For well over a decade, in my capacity as a researcher, broadcaster, and producer, I have relied heavily on Alphagalileo.
All of my work trips have been planned around stories that I've found on this site.
The under embargo section allows us to plan ahead and the news releases enable us to find key experts.
Going through the tailored daily updates is the best way to start the day. It's such a critical service for me and many of my colleagues.
Koula Bouloukos, Senior manager, Editorial & Production Underknown
We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet

We Work Closely With...


  • BBC
  • The Times
  • National Geographic
  • The University of Edinburgh
  • University of Cambridge
  • iesResearch
Copyright 2025 by AlphaGalileo Terms Of Use Privacy Statement