Neutrophils: the double-edged swords in cancer's battleground
en-GBde-DEes-ESfr-FR

Neutrophils: the double-edged swords in cancer's battleground

07/01/2025 TranSpread

Neutrophils are the most abundant white blood cells in the human body, primarily recognized for their essential roles in fighting infections and regulating inflammation. However, their involvement in cancer progression has long been a subject of intrigue and confusion. These immune cells exhibit a paradoxical behavior within tumors, where they can either promote or inhibit cancer growth. This dual functionality suggests that neutrophils are highly plastic, with their actions shaped by dynamic environmental cues within the tumor microenvironment (TME). Understanding this complexity is crucial for unraveling the full scope of their impact on cancer development and progression.

A team of researchers from the Department of Liver Surgery and Transplantation at the Liver Cancer Institute and Zhongshan Hospital, Fudan University, have published a review (DOI: 10.20892/j.issn.2095-3941.2024.0192) in Cancer Biology & Medicine. The paper delves into the nuanced roles neutrophils play within the TME, offering a detailed exploration of their heterogeneity and plasticity. The study presents a comprehensive synthesis of current research and identifies new therapeutic opportunities for targeting neutrophils in cancer treatment.

This review challenges the conventional view of neutrophils as mere short-lived effectors, focusing instead on their diversity and adaptability within the TME. The study traces the journey of neutrophils from their origins in the bone marrow to their specialized roles within tumors. Researchers emphasize how the local cytokine and chemokine landscape influences the recruitment and functional orientation of neutrophil subsets. Notably, the review highlights how these subsets, with distinct gene signatures and temporal functions, can influence tumor behavior and patient outcomes. Subsets involved in antigen presentation and angiogenesis were identified as key players, linked to specific tumor types and clinical prognoses. This wealth of information provides a foundation for developing targeted immunotherapies that harness the unique dynamics of neutrophils.

Dr. Qiang Gao, corresponding author of the study, explains, "Our findings challenge the conventional view of neutrophils as transient, effector cells. Instead, we reveal their remarkable heterogeneity and dynamic role in the TME. These insights are critical for designing more effective cancer therapies that leverage the full potential of the immune system."

The implications of this research are profound, offering new avenues for the development of prognostic models and targeted cancer therapies. By focusing on the plasticity of neutrophils and combining therapies that modulate their behavior, the study paves the way for more personalized and effective treatments. This new approach has the potential to enhance the immune system’s ability to fight cancer, opening doors to more advanced and tailored therapeutic strategies.

###

References

DOI

10.20892/j.issn.2095-3941.2024.0192

Original Source URL

https://doi.org/10.20892/j.issn.2095-3941.2024.0192

Funding information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 82130077, 81961128025, and 82121002), the Research Projects from the Science and Technology Commission of Shanghai Municipality (Grant Nos. 21JC1401200, 20JC1418900, and 21JC1410100) to QG, the China National Postdoctoral Program for Innovative Talents (Grant No. BX20240090), and the China Postdoctoral Science Foundation (Grant No. 2024M750551) to MZ.

About Cancer Biology & Medicine

Cancer Biology & Medicine (CBM) is a peer-reviewed open-access journal sponsored by China Anti-cancer Association (CACA) and Tianjin Medical University Cancer Institute & Hospital. The journal monthly provides innovative and significant information on biological basis of cancer, cancer microenvironment, translational cancer research, and all aspects of clinical cancer research. The journal also publishes significant perspectives on indigenous cancer types in China. The journal is indexed in SCOPUS, MEDLINE and SCI (IF 5.6, 5-year IF 5.9), with all full texts freely visible to clinicians and researchers all over the world (http://www.ncbi.nlm.nih.gov/pmc/journals/2000/).

Paper title: Complex role of neutrophils in the tumor microenvironment: an avenue for novel immunotherapies
Attached files
  • Overview of neutrophil mechanisms in anti-tumor activities.
07/01/2025 TranSpread
Regions: North America, United States, Asia, China
Keywords: Science, Life Sciences, Health, Medical

Disclaimer: AlphaGalileo is not responsible for the accuracy of news releases posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Testimonials

For well over a decade, in my capacity as a researcher, broadcaster, and producer, I have relied heavily on Alphagalileo.
All of my work trips have been planned around stories that I've found on this site.
The under embargo section allows us to plan ahead and the news releases enable us to find key experts.
Going through the tailored daily updates is the best way to start the day. It's such a critical service for me and many of my colleagues.
Koula Bouloukos, Senior manager, Editorial & Production Underknown
We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet

We Work Closely With...


  • BBC
  • The Times
  • National Geographic
  • The University of Edinburgh
  • University of Cambridge
  • iesResearch
Copyright 2025 by AlphaGalileo Terms Of Use Privacy Statement