Chemistry Inorganic and biocatalysts work together to reduce CO-2
en-GBde-DEes-ESfr-FR

Chemistry Inorganic and biocatalysts work together to reduce CO-2


In order to recover valuable substances from CO2, it must be reduced in many individual steps. If electrocatalysis is used for this, many potentially different potential molecules are formed, which cannot necessarily be used. Biocatalysts, on the other hand, are selective and only produce one product – but they are also very sensitive. An international research team led by Professor Wolfgang Schuhmann from the Center for Electrochemistry at Ruhr-Universität Bochum, Germany, and Dr. Felipe Conzuelo from the Universidade Nova de Lisboa, Portugal, has developed a hybrid catalysis cascade that makes use of the advantages of both processes. The researchers report in the journal “Angewandte Chemie Interational Edition” from December 23, 2024.

Advantages and disadvantages of electrocatalysis and biocatalysis

Methanol is one of the substances that we would like to obtain from climate-damaging CO2. It is often used as a synthesis raw material in the chemical industry. “Many reduction steps are required to produce methanol, as carbon dioxide is the most highly oxidized form of carbon,” explains Wolfgang Schuhmann. Electrocatalysis is able to initiate these steps. However, while it is still selective in the first step, the reaction path then branches out and up to 16 different products are formed, not necessarily methanol. The situation is different with biocatalysts: these natural enzymes catalyze just one reaction and therefore only yield one product. However, they are complicated to handle, very sensitive or require cofactors for the reaction.

Combining both processes

In order to combine the advantages of both processes, the team led by first authors Panpan Wang and Xin Wang married electrocatalysis and biocatalysis. While the first reaction step from CO2 to formate is electrocatalytic, the second and third steps are catalyzed by formaldehyde dehydrogenase and alcohol dehydrogenase. These enzymes require NAD (nicotinamide adenine dinucleotide) as a cofactor, which is consumed by the catalytic reaction and must be regenerated. This regeneration is achieved by a third enzyme. Finally, the valuable substance methanol is produced. “The work proves that such hybrid cascades are in principle feasible and make complex, multi-step reactions selectively possible,” summarizes Wolfgang Schuhmann.

Funding

This work has received funding from the European Research Council ERC under the European Union's Horizon 2020 research and innovation program (CasCat 833408) and FCT – Fundacao para a Ciencia e a Tecnologia (2022.07024.PTDC).

Panpan Wang, Xin Wang, Shubhadeep Chandra, Anna Lielpetere, Thomas Quast, Felipe Conzuelo, Wolfgang Schuhmann: Hybrid Enzyme-Electrocatalyst Cascade Modified Gas-Diffusion Electrodes for Methanol Formation from Carbon Dioxide, in: Angewandte Chemie Int. Ed., 2024, DOI: 10.1002/anie.202422882, https://onlinelibrary.wiley.com/doi/10.1002/anie.202422882
Attached files
  • First author Panpan Wang tested the catalysis cascade in the laboratory. RUB, MarquardThe image may only be used in the context of the press release "Inorganic and biocatalysts work together to reduce CO-2" published by RUB on January, 13, 2025.
Regions: Europe, Germany, Portugal
Keywords: Science, Chemistry

Disclaimer: AlphaGalileo is not responsible for the accuracy of news releases posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Testimonials

For well over a decade, in my capacity as a researcher, broadcaster, and producer, I have relied heavily on Alphagalileo.
All of my work trips have been planned around stories that I've found on this site.
The under embargo section allows us to plan ahead and the news releases enable us to find key experts.
Going through the tailored daily updates is the best way to start the day. It's such a critical service for me and many of my colleagues.
Koula Bouloukos, Senior manager, Editorial & Production Underknown
We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet

We Work Closely With...


  • BBC
  • The Times
  • National Geographic
  • The University of Edinburgh
  • University of Cambridge
  • iesResearch
Copyright 2025 by AlphaGalileo Terms Of Use Privacy Statement