Nanoparticles damage coronavirus in an unexpected way, paving the way for new disinfection technology
en-GBde-DEes-ESfr-FR

Nanoparticles damage coronavirus in an unexpected way, paving the way for new disinfection technology


A new way to neutralise the coronavirus and other membrane-surrounded viruses has been discovered by researchers from the Swedish University of Agricultural Sciences and the University of Tartu. Certain mineral nanoparticles were found to damage the membrane of the virus, making it less able to enter human cells. The mode of action that is demonstrated has not been discussed in previous research. The technology works at room temperature and also in the dark, offering a range of benefits for disinfecting surfaces, air and water.

”Using this new knowledge, it should be easy to create surfaces with antiviral properties by simply spraying them with aqueous solutions of suitable nanoparticles* and letting them dry. It should also be easy to design cost-effective filters to purify contaminated air and water,” says Professor Vadim Kessler from SLU who has led the work.

The recent COVID-19 pandemic has led to an intense search for new types of treatments and disinfection methods that can be used in outbreaks of viral diseases of this type. One area that has received much attention is nanotechnology, as tiny particles of certain metals and metal oxides have been shown to have anti-viral properties.

Now, researchers from SLU and the University of Tartu in Estonia have studied the outcome when certain types of mineral nanoparticles come into contact with a coronavirus, and they discovered a mode of action that has not been proposed before.

“We now understand what properties such particles need to have to be effective against the coronavirus, and this is a very important step forward,” says Vadim Kessler.

Coronaviruses belong to a type of virus that has an outer envelope, a lipid membrane. It turned out that nanoparticles of sand minerals such as titanium oxide bind very strongly to phospholipids in this membrane. This damages the membrane and leads to the release of viral genetic material, thereby making the virus less able to infect cells.

A major advantage is that this happens at room temperature and that it does not require any kind of activation. Previously, it was believed that mineral nanoparticles could only destroy viruses by producing so-called reactive oxygen species, which would require illumination with UV light.

The study thus suggests that surfaces coated with titanium nanoparticles can destroy enveloped viruses such as coronaviruses and influenza viruses without needing to be activated by UV light, and thus can work in dark spaces. Other small metal oxides that bind strongly to phospholipids, such as iron and aluminum oxides, could work in the same way. Another possible application could be to purify contaminated water in emergencies by adding a nanopreparation and allowing the resulting gel to settle.

“The particles we produce are not dangerous to the human body,” adds Angela Ivask, who is Professor of Genetics at the University of Tartu. “We have tested them on several cell lines to assure this.”

*Nanoparticles are extremely small and can sometimes have properties that are completely different compared to larger particles of the same material.

Björn Greijer, Alexandra Nefedova, Tatiana Agback, Peter Agback, Vambola Kisand, Kai Rausalu, Alexander Vanetsev, Gulaim A. Seisenbaeva, Angela Ivask, Vadim G. Kessler. Molecular mechanisms behind the anti corona virus activity of small metal oxide nanoparticles. 2025. Nanoscale,
https://doi.org/10.1039/D4NR03730H
Attached files
  • Proposed schematics of the interaction between an enveloped virus and titanate nanoparticles (grey color indicates phospholipids, yellow and brown indicate different kinds of membrane proteins). Illustration: Björn Greijer
Regions: Europe, Sweden, Estonia
Keywords: Science, Chemistry, Life Sciences, Health, Covid-19, Medical

Disclaimer: AlphaGalileo is not responsible for the accuracy of news releases posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Testimonials

For well over a decade, in my capacity as a researcher, broadcaster, and producer, I have relied heavily on Alphagalileo.
All of my work trips have been planned around stories that I've found on this site.
The under embargo section allows us to plan ahead and the news releases enable us to find key experts.
Going through the tailored daily updates is the best way to start the day. It's such a critical service for me and many of my colleagues.
Koula Bouloukos, Senior manager, Editorial & Production Underknown
We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet

We Work Closely With...


  • BBC
  • The Times
  • National Geographic
  • The University of Edinburgh
  • University of Cambridge
  • iesResearch
Copyright 2025 by AlphaGalileo Terms Of Use Privacy Statement