Nursery of the Blood: How Stem Cells Calm the Body’s Immune Response
en-GBde-DEes-ESfr-FR

Nursery of the Blood: How Stem Cells Calm the Body’s Immune Response


FRANKFURT. Every second, an adult generates around five million new blood cells to replace aging or dying ones, making the blood system a highly regenerative organ. These new blood cells are formed in the bone marrow from unspecialized cells, known as blood stem cells. Through several intermediate stages, these stem cells develop into oxygen-transporting erythrocytes, blood-clotting platelets, and the large group of white blood cells which orchestrate the immune defense. This process, known as differentiation, must be precisely regulated to ensure a balanced production of mature blood cells across all cell types.

An international team of scientists from Universitätsmedizin Frankfurt/Goethe University, University of Gothenburg, and University Hospital Pamplona, led by Prof. Michael Rieger from Universitätsmedizin Frankfurt’s Department of Medicine II, has now molecularly decoded the differentiation pathways of human blood stem cells into all specialized blood cell types. Using state-of-the-art sequencing methods, the research team identified gene and protein expression patterns in more than 62,000 individual cells and analyzed the resulting data with high-performance computing.

“We were able to gain an overview of the molecular processes in stem cells and discover new surface proteins that are crucial for the complex interaction between stem cells and their bone marrow environment,” explains Rieger. “This provides us with detailed insights into what exactly the unique characteristics of a stem cell are and which genes regulate stem cell differentiation. This newly established technology in my lab will answer many unresolved questions in health research with extraordinary precision.”

The researchers uncovered an unexpected finding: “We found a protein called PD-L2 on the surface of blood stem cells, which we know suppresses the immune response of our defense cells – the T cells – by preventing their activation and proliferation and inhibiting the release of inflammatory substances called cytokines,” summarizes the study’s first author, PhD student Tessa Schmachtel.

PD-L2 likely serves to prevent immune-mediated damage, biologist Schmachtel explains. “This is particularly important for protecting stem cells from potential attacks by reactive T cells and likely plays a key role in stem cell transplantations with grafts from unrelated donors. PD-L2 could help to reduce the body’s immune response against the transplanted stem cells.”

Rieger is convinced: “Groundbreaking discoveries can only be made on the basis of close interdisciplinary collaboration between physicians, scientists, and bioinformaticians – as practiced at Universitätsmedizin Frankfurt – and through the establishment of international networks.”
Hana Komic, Tessa Schmachtel, Catia Simoes, Marius Külp, Weijia Yu, Adrien Jolly, Malin S. Nilsson, Carmen Gonzalez, Felipe Prosper, Halvard Bonig, Bruno Paiva, Fredrik B. Thorén, Michael A. Rieger: Continuous map of early hematopoietic stem cell differentiation across human lifetime. Nature Communications 16, Article number: 2287 (2025) https://doi.org/10.1038/s41467-025-57096-y
Attached files
  • Professor Michael Rieger, Universitätsmedizin Frankfurt and Goethe University. Photo: Uwe Dettmar for Goethe University
  • Tessa Schmachtel, Universitätsmedizin Frankfurt and Goethe University. Photo: Uwe Dettmar for Goethe University
Regions: Europe, Germany
Keywords: Science, Life Sciences, Health, Medical

Disclaimer: AlphaGalileo is not responsible for the accuracy of content posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Testimonials

For well over a decade, in my capacity as a researcher, broadcaster, and producer, I have relied heavily on Alphagalileo.
All of my work trips have been planned around stories that I've found on this site.
The under embargo section allows us to plan ahead and the news releases enable us to find key experts.
Going through the tailored daily updates is the best way to start the day. It's such a critical service for me and many of my colleagues.
Koula Bouloukos, Senior manager, Editorial & Production Underknown
We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet

We Work Closely With...


  • BBC
  • The Times
  • National Geographic
  • University of Cambridge
  • iesResearch
Copyright 2025 by AlphaGalileo Terms Of Use Privacy Statement