5,700-Year Storm Archive Shows Rise in Tropical Storms and Hurricanes in the Caribbean
en-GBde-DEes-ESfr-FR

5,700-Year Storm Archive Shows Rise in Tropical Storms and Hurricanes in the Caribbean


FRANKFURT. In the shallow waters of the Lighthouse Reef Atoll, located 80 kilometers off the coast of the small Central American country of Belize, the seabed suddenly drops steeply. Resembling a dark blue eye surrounded by coral reefs, the “Great Blue Hole” is a 125-meter-deep underwater cave with a diameter of 300 meters, which originated thousands of years ago from a karst cave located on a limestone island. During the last ice age, the cave’s roof collapsed. As ice sheets melted and global sea level started to rise, the cave was subsequently flooded.

In the summer of 2022, a team of scientists – led by Prof. Eberhard Gischler, head of the Biosedimentology Research Group at Goethe University Frankfurt, and funded by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) – transported a drilling platform over the open sea to the “Great Blue Hole.” They then proceeded to extract a 30-meter sediment core from the underwater cave, which has been accumulating sediment for approximately 20,000 years. The core was subsequently analyzed by a research team from the universities of Frankfurt, Cologne, Göttingen, Hamburg, and Bern.

Coarse layers are a testimony to tropical storms

Some 7,200 years ago, the former limestone island of what is now Lighthouse Reef was inundated by the sea. The layered sediments at the bottom of the “Great Blue Hole” serve as archive for extreme weather events of the past 5,700 years, including tropical storms and hurricanes. Dr. Dominik Schmitt, a researcher in the Biosedimentology Research Group and the study’s lead author, explains: “Due to the unique environmental conditions – including oxygen-free bottom water and several stratified water layers – fine marine sediments could settle largely undisturbed in the ‘Great Blue Hole.’ Inside the sediment core, they look a bit like tree rings, with the annual layers alternating in color between gray-green and light green depending on organic content.” Storm waves and storm surges transported coarse particles from the atoll’s eastern reef edge into the “Great Blue Hole”, forming distinct sedimentary event layers (tempestites) at the bottom. “The tempestites stand out from the fair-weather gray-green sediments in terms of grain size, composition, and color, which ranges from beige to white,” says Schmitt.

The research team identified and precisely dated a total of 574 storm events over the past 5,700 years, offering unprecedented insights into climate fluctuations and hurricane cycles in the southwestern Caribbean. Instrumental data and human records available to date had only covered the past 175 years.

Rising incidence of storms in the southwestern Caribbean

The distribution of storm event layers in the sediment core reveals that the frequency of tropical storms and hurricanes in the southwestern Caribbean has steadily increased over the past six millennia. Schmitt explains: “A key factor has been the southward shift of the equatorial low-pressure zone. Known as the Intertropical Convergence Zone, this zone influences the location of major storm formation areas in the Atlantic and determines how tropical storms and hurricanes move and where they make landfall in the Caribbean.”

The research team was also able to correlate higher sea-surface temperatures with increased storm activity. Schmitt states: “These shorter-term fluctuations align with five distinct warm and cold climate periods, which also impacted water temperatures in the tropical Atlantic.”

Climate change results in greater storm activity

Over the past six millennia, between four and sixteen tropical storms and hurricanes passed over the “Great Blue Hole” per century. However, the nine storm layers from the past 20 years indicate that extreme weather events will be significantly more frequent in this region in the 21st century. Gischler warns: “Our results suggest that some 45 tropical storms and hurricanes could pass over this region in our century alone. This would far exceed the natural variability of the past millennia.” Natural climate fluctuations cannot account for this increase, the researchers emphasize, pointing instead to the ongoing warming during the Industrial Age, which results in rising ocean temperatures and stronger global La Niña events, thereby creating optimal conditions for frequent storm formation and their rapid intensification.
Dominik Schmitt, Eberhard Gischler, Martin Melles, Volker Wennrich, Hermann Behling, Lyudmila Shumilovskikh, Flavio S. Anselmetti, Hendrik Vogel, Jörn Peckmann, Daniel Birgel. An annually resolved 5700-year storm archive reveals drivers of Caribbean cyclone frequency. Science Advances (2025) https://doi.org/10.1126/sciadv.ads5624
Attached files
  • Drone image from 200 meters height above the “Great Blue Hole,” showing the drilling platform anchored in the center. Visible in the background is the edge of the Lighthouse Reef Atoll. Photo: Eberhard Gischler
  • The analyzed drill core (BH8-18/2) from a depth of 100-140 centimeters shows the greenish-gray, fine-grained marine sediments with annual layering. A total of 13 coarse-grained event layers (tempestites, EL36 to 47) stand out clearly due to their white-beige color and distinct composition compared to the fair-weather sediments. Photo from: Schmitt et al. 2025; Supplementary Materials
  • Event layer frequency in the “Great Blue Hole” in 100-year counting windows. The black line represents the 5,700-year trend towards increasing storm frequency in the southwestern Caribbean. The bar chart highlights superordinate short-term fluctuations (increased activity = red; decreased activity = blue), which correlate with warmer and colder Holocene climate periods. Green and brown bars: event-layers, not related to a storm, from the period before the complete flooding of the “Great Blue Hole,” which were, therefore, not included in the frequency reconstruction. Chart from: Schmitt et al. 2025; Supplementary Materials
Regions: Europe, Germany, Iceland, Latin America, Belize
Keywords: Science, Climate change, Earth Sciences

Disclaimer: AlphaGalileo is not responsible for the accuracy of content posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Testimonials

For well over a decade, in my capacity as a researcher, broadcaster, and producer, I have relied heavily on Alphagalileo.
All of my work trips have been planned around stories that I've found on this site.
The under embargo section allows us to plan ahead and the news releases enable us to find key experts.
Going through the tailored daily updates is the best way to start the day. It's such a critical service for me and many of my colleagues.
Koula Bouloukos, Senior manager, Editorial & Production Underknown
We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet

We Work Closely With...


  • BBC
  • The Times
  • National Geographic
  • University of Cambridge
  • iesResearch
Copyright 2025 by AlphaGalileo Terms Of Use Privacy Statement