New method for bicyclo[1.1.1]pentane ketones synthesis
en-GBde-DEes-ESfr-FR

New method for bicyclo[1.1.1]pentane ketones synthesis

26/03/2025 TranSpread

Since the 1990s, medicinal chemistry research has demonstrated that replacing benzene rings with bicyclo[1.1.1]pentane derivatives enhances drug properties such as solubility and metabolic stability while also circumventing patent restrictions. Notably, in 2009, Frank Lovering introduced the "escape from planarity" concept, which has gained momentum as research explores substituting planar aromatic hydrocarbons with three-dimensional cyclo[n.1.1]alkanes.

Benzoyl groups are prevalent in pharmaceuticals, making the replacement of benzene rings with bicyclo[1.1.1]pentane an intriguing area of study. However, existing synthetic methods often required high temperatures, metal catalysts or hazardous reagents.

In a new study, a team of researchers in China employed tert-butyl hydrogen peroxide (TBHP) as a hydrogen transfer agent under blue light to activate aldehyde hydrogen bonds, generating acyl radicals that react with spiral alkanes to form bicyclo[1.1.1]pentane-ketones (BCP-ketones).

"This mild, metal-free method proceeds at room temperature with moderate to high yields and tolerates oxidation-sensitive groups such as amino, methylthio, and ferrocene (2m, 2k, 2u)," shares Fener Chen, senior and corresponding author of the study. "In particular, we synthesized a molecule being incorporated of two BCP rings for the first time (2z)."

Mechanistic studies confirmed that reducing TBHP to catalytic amounts halted the reaction, indicating its stoichiometric consumption. High-resolution mass spectrometry and radical trapping experiments further supported the involvement of acyl radicals, validating a radical-based mechanism.

"In summary, we developed a one-step visible light-induced approach for the synthesis of bicyclo[1.1.1]pentane-ketone, characterized by mild reaction temperature and excellent tolerance to oxidation-labile substituents, delivering all products in moderate to high yields," adds Chen.

###

References

DOI

10.1016/j.gresc.2025.03.003

Original Source URL

https://doi.org/10.1016/j.gresc.2025.03.003

Funding information

This work was financially supported by the National Natural Science Foundation of China (No. 22208056), and Major Program of Qingyuan Innovation Laboratory (No. 00122001)

About Green Synthesis and Catalysis

Green Synthesis and Catalysis (GSC) is dedicated to publishing high-impact research discoveries and results from academic and industrial laboratories on sustainable synthetic technologies for molecule construction and production. The journal features content that is related to homogeneous and heterogeneous catalysis, including organometallics, metal-complex catalysis, organocatalysis, photocatalysis, supramolecular catalysis and biocatalysis, nano-catalysis and synthetic technologies such as synthesis design, reaction techniques, flow chemistry and continuous processing, multiphase catalysis, green reagents and solvents, catalyst immobilization and recycling, biotechnology, and separation science and process development.

Paper title: Visible light induced synthesis of the Benzoyl bioisosteres: bicyclo[1.1.1]pentane-ketone group
Attached files
  • A SIMPLE AND EFFECTIVE PHOTO REACTION DEVICE WAS USED TO SYNTHESIZE BCP KETONE
26/03/2025 TranSpread
Regions: North America, United States, Asia, China
Keywords: Science, Chemistry

Disclaimer: AlphaGalileo is not responsible for the accuracy of content posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Testimonials

For well over a decade, in my capacity as a researcher, broadcaster, and producer, I have relied heavily on Alphagalileo.
All of my work trips have been planned around stories that I've found on this site.
The under embargo section allows us to plan ahead and the news releases enable us to find key experts.
Going through the tailored daily updates is the best way to start the day. It's such a critical service for me and many of my colleagues.
Koula Bouloukos, Senior manager, Editorial & Production Underknown
We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet

We Work Closely With...


  • BBC
  • The Times
  • National Geographic
  • University of Cambridge
  • iesResearch
Copyright 2025 by AlphaGalileo Terms Of Use Privacy Statement