Astroteilchenphysik: Neutrinos sind leichter als 0,45 Elektronenvolt
en-GBde-DEes-ESfr-FR

Astroteilchenphysik: Neutrinos sind leichter als 0,45 Elektronenvolt


Das internationale KArlsruhe TRItium Neutrino Experiment (KATRIN) am Karlsruher Institut für Technologie (KIT) hat erneut Maßstäbe gesetzt: Aus den aktuellen Daten lässt sich eine Obergrenze von 0,45 Elektronenvolt/c2 (entspricht 8 x 10-37 Kilogramm) für die Masse des Neutrinos ableiten. Damit stellt KATRIN, das die Neutrinomasse mit einer modellunabhängigen Methode im Labor vermisst, erneut einen Weltrekord auf. Die Ergebnisse haben die Forschenden in der Fachzeitschrift Science veröffentlicht (DOI: 10.1126/science.adq9592).

Neutrinos gehören zu den rätselhaftesten Teilchen des Universums. Sie sind allgegenwärtig, reagieren aber äußerst selten mit Materie. In der Kosmologie beeinflussen Neutrinos die Entwicklung großräumiger Strukturen, während sie in der Teilchenphysik aufgrund ihrer winzigen Masse als Indikatoren für bisher unbekannte physikalische Prozesse dienen. Die präzise Messung der Neutrinomasse ist daher essenziell für ein vollständiges Verständnis der fundamentalen Gesetze der Natur.

Genau hier setzt das KATRIN-Experiment mit seinen internationalen Partnern an. KATRIN nutzt den Beta-Zerfall von Tritium, einem instabilen Wasserstoffisotop, um mithilfe der Energieverteilung der entstehenden Elektronen die Neutrinomasse zu messen. Um dies zu erreichen, sind hochentwickelte technische Komponenten notwendig: Das 70 Meter lange Experiment beherbergt eine intensive Tritiumquelle sowie ein hochauflösendes Spektrometer mit einem Durchmesser von zehn Metern. Diese Technologie ermöglicht eine bislang unerreichte Präzision bei der Messung der Neutrinomasse.

Mit den aktuellen Daten aus dem KATRIN-Experiment konnten die Forschenden für die Neutrinomasse eine Obergrenze von 0,45 Elektronenvolt/c2 (das entspricht 8 x 10-37 Kilogramm) ableiten. Gegenüber den letzten Ergebnissen aus dem Jahr 2022 konnten sie die Obergrenze damit fast um einen Faktor zwei senken.

Auswertung der Daten

Die Qualität der ersten Datensätze seit dem Start der Messungen im Jahr 2019 konnte über die letzten Jahre kontinuierlich verbessert werden. „Wir haben fünf Kampagnen mit gut 250 Messtagen aus dem Zeitraum von 2019 bis 2021 analysiert – das entspricht etwa einem Viertel der insgesamt mit KATRIN erwarteten Datennahme“, erklärt Professorin Kathrin Valerius vom Institut für Astroteilchenphysik des KIT, eine der beiden Co-Sprecherinnen des Experiments. „In jeder Messkampagne haben wir dazugelernt und die experimentellen Bedingungen weiter optimiert“, ergänzt Professorin Susanne Mertens vom Max-Planck-Institut für Kernphysik (MPIK) und der Technische Universität München (TUM).

Die Auswertung der komplexen Daten stellte für das internationale Datenanalyseteam eine Herausforderung dar. „Die Analyse der KATRIN-Daten ist hochanspruchsvoll, da eine bisher noch nie erreichte Genauigkeit benötigt wird“, betont Dr. Alexey Lokhov vom Institut für Experimentelle Teilchenphysik des KIT, Co-Analysekoordinator. „Wir benötigen den Einsatz hochmoderner Analysemethoden, wobei insbesondere Künstliche Intelligenz eine entscheidende Rolle spielt“, fügt Dr. Christoph Wiesinger vom MPIK und der TUM, ebenfalls Co-Analysekoordinator, hinzu.


Ausblick auf künftige Messungen

„Unsere Messungen zur Neutrinomasse werden noch bis Ende 2025 andauern. Durch die kontinuierliche Verbesserung des Experiments und der Analyse, sowie durch eine größere Datenmenge erwarten wir eine noch höhere Sensitivität – und möglicherweise bahnbrechende neue Erkenntnisse“, blickt das KATRIN-Team optimistisch in die Zukunft. Schon jetzt führt KATRIN das weltweite Feld der direkten Neutrinomassenmessung an und hat mit den ersten Daten die Ergebnisse früherer Experimente um das Vierfache übertroffen. Das aktuelle Resultat zeigt, dass Neutrinos mindestens eine Million Mal leichter sind als Elektronen, die leichtesten geladenen Elementarteilchen. Diesen enormen Massenunterschied zu erklären, bleibt eine Herausforderung für die Theoretische Teilchenphysik.

Neben der präzisen Neutrinomassenmessung plant KATRIN bereits die nächste Phase. Ab 2026 wird ein neues Detektorsystem, TRISTAN, installiert. Dieses Upgrade des Experiments ermöglicht die Suche nach sogenannten sterilen Neutrinos im Kiloelektronenvolt/c2-Massenbereich. Sterile Neutrinos sind bisher hypothetische Elementarteilchen, die nochmals deutlich schwächer interagieren als die bekannten Neutrinos und geeignete Kandidaten für die Dunkle Materie sind. Darüber hinaus wird mit KATRIN++ ein Forschungs- und Entwicklungsprogramm initiiert, um Konzepte für ein Experiment der nächsten Generation zu erarbeiten, das eine noch präzisere direkte Messung der Neutrinomasse ermöglichen soll.

Die KATRIN Kollaboration

An KATRIN arbeiten Wissenschaftlerinnen und Wissenschaftler von über 20 Institutionen aus 7 Ländern mit.

Originalpublikation
M. Aker et al. (KATRIN Collaboration): Direct neutrino-mass measurement based on 259 days of KATRIN data. Science, 2025. DOI: 10.1126/science.adq9592.


Weitere Informationen

Virtueller Rundgang durch das KATRIN-Experiment

Als „Die Forschungsuniversität in der Helmholtz-Gemeinschaft“ schafft und vermittelt das KIT Wissen für Gesellschaft und Umwelt. Ziel ist es, zu den globalen Herausforderungen maßgebliche Beiträge in den Feldern Energie, Mobilität und Information zu leisten. Dazu arbeiten rund 10 000 Mitarbeiterinnen und Mitarbeiter auf einer breiten disziplinären Basis in Natur-, Ingenieur-, Wirtschafts- sowie Geistes- und Sozialwissenschaften zusammen. Seine 22 800 Studierenden bereitet das KIT durch ein forschungsorientiertes universitäres Studium auf verantwortungsvolle Aufgaben in Gesellschaft, Wirtschaft und Wissenschaft vor. Die Innovationstätigkeit am KIT schlägt die Brücke zwischen Erkenntnis und Anwendung zum gesellschaftlichen Nutzen, wirtschaftlichen Wohlstand und Erhalt unserer natürlichen Lebensgrundlagen. Das KIT ist eine der deutschen Exzellenzuniversitäten.

M. Aker et al. (KATRIN Collaboration): Direct neutrino-mass measurement based on 259 days of KATRIN data. Science, 2025. DOI: 10.1126/science.adq9592.
Attached files
  • Blick ins Innere des KATRIN-Hauptspektrometers (Foto: M. Zacher/KATRIN Coll.)
  • Die KATRIN-Kollaboration bei einem Treffen im Oktober 2024 (Foto: J. Wolf/KATRIN Coll.)
Regions: Europe, Germany
Keywords: Science, Physics

Disclaimer: AlphaGalileo is not responsible for the accuracy of content posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Testimonials

For well over a decade, in my capacity as a researcher, broadcaster, and producer, I have relied heavily on Alphagalileo.
All of my work trips have been planned around stories that I've found on this site.
The under embargo section allows us to plan ahead and the news releases enable us to find key experts.
Going through the tailored daily updates is the best way to start the day. It's such a critical service for me and many of my colleagues.
Koula Bouloukos, Senior manager, Editorial & Production Underknown
We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet

We Work Closely With...


  • e
  • The Research Council of Norway
  • SciDevNet
  • Swiss National Science Foundation
  • iesResearch
Copyright 2025 by AlphaGalileo Terms Of Use Privacy Statement