Targeted Drug Delivery System for Pulmonary Fibrosis: Design and Development of Biomaterials
en-GBde-DEes-ESfr-FR

Targeted Drug Delivery System for Pulmonary Fibrosis: Design and Development of Biomaterials

13/04/2025 Compuscript Ltd

https://www.scienceopen.com/hosted-document?doi=10.15212/bioi-2025-0016
Announcing a new article publication for BIO Integration journal. Pulmonary fibrosis (PF) is a progressive interstitial lung disease characterized by excessive extracellular matrix deposition and tissue scarring, and leading to impaired lung function and respiratory failure. Although current treatments, such as pirfenidone and nintedanib, slow disease progression, they fail to completely halt or reverse fibrosis. Therefore, innovative therapeutic strategies are needed. Targeted drug delivery systems (TDDSs) are emerging as promising solutions. Biomaterials play critical roles in these systems by enhancing drug specificity, availability, and efficacy, while minimizing systemic toxicity. The most notable biomaterials include nanotechnology-based systems, including liposomes and polymeric nanoparticles, which facilitate drug penetration and slow release in fibrotic tissues. Hydrogels have three-dimensional structures providing controlled and sustained drug release at inflammation sites, and therefore are particularly valuable in PF treatment. Furthermore, biological carriers such as stem cells and extracellular vesicles have biocompatibility and anti-inflammatory effects that improve therapeutic outcomes. Despite the promising potential of these systems, clinical translation is hindered by several challenges, including immune clearance, stability of delivery platforms, and optimization of drug retention within diseased tissues. Interdisciplinary approaches integrating precision medicine with advancements in biomaterials may provide solutions opening new avenues for PF treatment.
This article discusses current developments in targeted drug delivery for PF, emphasizing the importance of biomaterials, the mechanisms and barriers involved in pulmonary drug delivery, and future perspectives for overcoming current limitations. The ultimate goal is to improve patient outcomes by revolutionizing the approach to PF treatment through advanced drug delivery technologies.
# # # # # #
BIO Integration is fully open access journal which will allow for the rapid dissemination of multidisciplinary views driving the progress of modern medicine.

As part of its mandate to help bring interesting work and knowledge from around the world to a wider audience, BIOI will actively support authors through open access publishing and through waiving author fees in its first years. Also, publication support for authors whose first language is not English will be offered in areas such as manuscript development, English language editing and artwork assistance.

BIOI is now open for submissions; articles can be submitted online at:
https://mc04.manuscriptcentral.com/bioi

Please visit www.bio-integration.org to learn more about the journal.
Editorial Board: https://bio-integration.org/editorial-board/

Please visit www.bio-integration.org to learn more about the journal.
Editorial Board: https://bio-integration.org/editorial-board/

BIOI is available on the IngentaConnect platform (https://www.ingentaconnect.com/content/cscript/bioi) and at the BIO Integration website (www.bio-integration.org).

Submissions may be made using ScholarOne (https://mc04.manuscriptcentral.com/bioi).
There are no author submission or article processing fees.

Follow BIOI on Twitter @JournalBio; Facebook (https://www.facebook.com/BIO-Integration-Journal-108140854107716/) and LinkedIn (https://www.linkedin.com/company/bio-integration-journal/).

ISSN 2712-0074
eISSN 2712-0082

Jinsha Liu, Zifeng Pan and Arshma Khan et al. Targeted Drug Delivery System for Pulmonary Fibrosis: Design and Development of Biomaterials. BIOI. 2025. Vol. 6(1). DOI: 10.15212/bioi-2025-0016
# # # # # #
Jinsha Liu, Zifeng Pan and Arshma Khan et al. Targeted Drug Delivery System for Pulmonary Fibrosis: Design and Development of Biomaterials. BIOI. 2025. Vol. 6(1). DOI: 10.15212/bioi-2025-0016
13/04/2025 Compuscript Ltd
Regions: Europe, Ireland
Keywords: Health, Medical

Disclaimer: AlphaGalileo is not responsible for the accuracy of content posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Testimonials

For well over a decade, in my capacity as a researcher, broadcaster, and producer, I have relied heavily on Alphagalileo.
All of my work trips have been planned around stories that I've found on this site.
The under embargo section allows us to plan ahead and the news releases enable us to find key experts.
Going through the tailored daily updates is the best way to start the day. It's such a critical service for me and many of my colleagues.
Koula Bouloukos, Senior manager, Editorial & Production Underknown
We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet

We Work Closely With...


  • e
  • The Research Council of Norway
  • SciDevNet
  • Swiss National Science Foundation
  • iesResearch
Copyright 2025 by AlphaGalileo Terms Of Use Privacy Statement