A review published recently in Wearable Electronics examines the current applications and persistent challenges of flexible wearable technologies in aerospace medicine. As human space exploration progresses toward extended-duration missions, the imperative for real-time monitoring of astronauts' physiological and psychological well-being has become increasingly critical. The unique space environment characterized by microgravity conditions, cumulative radiation exposure, and extreme thermal fluctuations presents multifaceted health risks to crew members.
Flexible wearable systems, equipped with multimodal sensor arrays, enable comprehensive and continuous health surveillance. These integrated platforms include inertial measurement units, biosignal electrodes, and environmental detectors, among others. They have proven to be indispensable for early anomaly detection in cardiopulmonary functions, neuromuscular performance, and circadian rhythm regulation, thereby facilitating timely personalized countermeasures.
Nonetheless, despite recent advancements in materials science and miniaturized electronics, three notable technical barriers persist: 1) device reliability under combined space stressors, 2) secure data management protocols addressing confined spacecraft privacy concerns, and 3) multi-parametric data fusion challenges involving temporal-spatial synchronization of heterogeneous bio-signals.
Breakthrough development trajectories emphasize future research in the field of flexible wearable devices, particularly for astronaut applications, will focus on several key areas and their interdisciplinary collaborations. These research areas will cover advanced materials science, new materials and sensor technology, intelligent algorithms, data processing and device integration. Interestingly, the development of technologies in the field will still rely on material innovation, the creation of intelligent algorithms, the improvement of user experience and interdisciplinary cooperation. In particular, continuous development and maturity of the technology, together with flexible electronic devices, will play an important role in enhancing astronauts' health monitoring capabilities and promoting the progress of human space exploration in the future.
###
References
DOI
10.1016/j.wees.2024.12.007
Originlal Source URL
https://doi.org/10.1016/j.wees.2024.12.007
Funding information
This work was supported by the National Social Science Foundation of China (nos. 20BTY029 and 52003101), the Space Medical Experiment Project of CMSP (HYZHXMH01008) and the China Postdoctoral Science Foundation (2020M673052 and 2021T140270).
About Wearable Electronics
Wearable Electronics is a peer-reviewed open access journal covering all aspects of wearable electronics. The journal invites the submission of research papers, reviews, and rapid communications, aiming to present innovative directions for further research and technological advancements in this significant field. It encompasses both applied and fundamental aspects, including wearable electronic materials, wearable electronic devices, and manufacturing technologies of such devices. By incorporating the expertise of scientists, engineers, and industry professionals, the journal strives to address the pivotal challenges that shape the field of wearable science and its core technologies.