How Flexible Wearables Protect Astronauts' Health in Space
en-GBde-DEes-ESfr-FR

How Flexible Wearables Protect Astronauts' Health in Space

15/04/2025 TranSpread

A review published recently in Wearable Electronics examines the current applications and persistent challenges of flexible wearable technologies in aerospace medicine. As human space exploration progresses toward extended-duration missions, the imperative for real-time monitoring of astronauts' physiological and psychological well-being has become increasingly critical. The unique space environment characterized by microgravity conditions, cumulative radiation exposure, and extreme thermal fluctuations presents multifaceted health risks to crew members.

Flexible wearable systems, equipped with multimodal sensor arrays, enable comprehensive and continuous health surveillance. These integrated platforms include inertial measurement units, biosignal electrodes, and environmental detectors, among others. They have proven to be indispensable for early anomaly detection in cardiopulmonary functions, neuromuscular performance, and circadian rhythm regulation, thereby facilitating timely personalized countermeasures.

Nonetheless, despite recent advancements in materials science and miniaturized electronics, three notable technical barriers persist: 1) device reliability under combined space stressors, 2) secure data management protocols addressing confined spacecraft privacy concerns, and 3) multi-parametric data fusion challenges involving temporal-spatial synchronization of heterogeneous bio-signals.

Breakthrough development trajectories emphasize future research in the field of flexible wearable devices, particularly for astronaut applications, will focus on several key areas and their interdisciplinary collaborations. These research areas will cover advanced materials science, new materials and sensor technology, intelligent algorithms, data processing and device integration. Interestingly, the development of technologies in the field will still rely on material innovation, the creation of intelligent algorithms, the improvement of user experience and interdisciplinary cooperation. In particular, continuous development and maturity of the technology, together with flexible electronic devices, will play an important role in enhancing astronauts' health monitoring capabilities and promoting the progress of human space exploration in the future.

###

References

DOI

10.1016/j.wees.2024.12.007

Originlal Source URL

https://doi.org/10.1016/j.wees.2024.12.007

Funding information

This work was supported by the National Social Science Foundation of China (nos. 20BTY029 and 52003101), the Space Medical Experiment Project of CMSP (HYZHXMH01008) and the China Postdoctoral Science Foundation (2020M673052 and 2021T140270).

About Wearable Electronics

Wearable Electronics is a peer-reviewed open access journal covering all aspects of wearable electronics. The journal invites the submission of research papers, reviews, and rapid communications, aiming to present innovative directions for further research and technological advancements in this significant field. It encompasses both applied and fundamental aspects, including wearable electronic materials, wearable electronic devices, and manufacturing technologies of such devices. By incorporating the expertise of scientists, engineers, and industry professionals, the journal strives to address the pivotal challenges that shape the field of wearable science and its core technologies.

Paper title:Flexible wearable device applications for monitoring astronaut health: Current status and challenges
Attached files
  • The effects of microgravity on an astronaut’s musculoskeletal system.
  • Integrated smart wearables with advanced features
  • To develop more advanced astronaut health monitoring devices in the future, interdisciplinary collaborations are needed, including but not limited to new materials and sensor technology, intelligent algorithms and data processing as well as device integration.
15/04/2025 TranSpread
Regions: North America, United States, Asia, China
Keywords: Business, Aerospace, Science, Space Science

Disclaimer: AlphaGalileo is not responsible for the accuracy of content posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Testimonials

For well over a decade, in my capacity as a researcher, broadcaster, and producer, I have relied heavily on Alphagalileo.
All of my work trips have been planned around stories that I've found on this site.
The under embargo section allows us to plan ahead and the news releases enable us to find key experts.
Going through the tailored daily updates is the best way to start the day. It's such a critical service for me and many of my colleagues.
Koula Bouloukos, Senior manager, Editorial & Production Underknown
We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet

We Work Closely With...


  • e
  • The Research Council of Norway
  • SciDevNet
  • Swiss National Science Foundation
  • iesResearch
Copyright 2025 by AlphaGalileo Terms Of Use Privacy Statement