New drug targets bone disease by blocking the Wnt signaling pathway
en-GBde-DEes-ESfr-FR

New drug targets bone disease by blocking the Wnt signaling pathway

16/04/2025 TranSpread

Sclerosteosis arises from mutations in the SOST gene, causing abnormally high bone mass and skeletal overgrowth, which can lead to severe health issues such as hearing loss and increased intracranial pressure. The key culprit behind this condition is the disruption of the Wnt signaling pathway, crucial for bone development. This groundbreaking study seeks to determine whether inhibiting Porcupine, a key regulator within this pathway, can reverse the bone overgrowth seen in this rare and serious disorder.

This study was published (DOI: 10.1038/s41413-025-00406-3) on April 7 2025 in Bone Research, by a research team from the Skeletal Biology Group at the Royal Veterinary College, London, in collaboration with UCB Pharma, Slough, UK. Led by Dr. Scott J. Roberts, the team investigates the impact of LGK974, a Porcupine inhibitor, on bone mass regulation in a sclerosteosis mouse model. By targeting the Wnt signaling pathway, LGK974 offers an innovative approach to combat the excessive bone growth seen in sclerosteosis. The research uncovers the potential of LGK974 as a promising treatment for this ultra-rare condition, providing an alternative to invasive surgeries commonly required for severe cases.

Through both in vitro and in vivo experiments, the research team examined how LGK974 affects bone formation and the Wnt/β-catenin signaling pathway. The results were striking: LGK974 inhibited osteoblast activity and mineralization, mimicking the effects of sclerostin, a natural bone growth regulator. The drug successfully reduced excessive bone growth in the skull, vertebrae, and tibiae of Sost-/- mice, a model of sclerosteosis. Intriguingly, the drug exhibited a potential sexual dimorphic response, with male mice showing more pronounced benefits. The study also suggests that LGK974 not only prevents bone overgrowth but also preserves bone structure, reducing ossification. The potential for LGK974 to address the dangerous symptoms of sclerosteosis—such as hearing loss and intracranial pressure—could offer a significant improvement over the current surgical options available to patients.

"The ability to effectively inhibit bone overgrowth at sites of severe/fatal sclerosteosis pathologies, without obviously disrupting other physiological functions, is a monumental step forward," said Dr. Scott J. Roberts, a senior researcher in the study. "The success of LGK974 in preclinical models marks a significant breakthrough, moving us closer to a viable, non-invasive treatment that could offer real relief for patients with this devastating condition."

The findings of this study hold great promise not only for sclerosteosis but also for other Wnt-related high bone mass conditions, such as Van Buchem disease. Targeting Porcupine provides a new avenue for treatment that could reduce reliance on high-risk surgeries. However, further clinical trials are necessary to confirm the drug’s safety and efficacy in humans, with attention to possible sex-based differences in response. This research highlights the importance of developing alternative, targeted therapies to manage bone overgrowth and improve the lives of patients who currently face limited treatment options and a lifetime of pain, discomfort and debilitating symptoms.

###

References

DOI

10.1038/s41413-025-00406-3

Original Source URL

https://doi.org/10.1038/s41413-025-00406-3

Funding Information

Funding from UCB Pharma.

About Bone Research

Bone Research was founded in 2013. As a new English-language periodical, Bone Research focuses on basic and clinical aspects of bone biology, pathophysiology and regeneration, and supports the foremost discoveries resulting from basic investigations and clinical research related to bone. The aim of the Journal is to foster the worldwide dissemination of research in bone-related physiology, pathology, diseases and treatment.

Paper title: Porcupine inhibition is a promising pharmacological treatment for severe sclerosteosis pathologies
Attached files
  • LGK974 treatment reduces tibial trabecular bone morphometric parameters in Sost-/- mice.
16/04/2025 TranSpread
Regions: North America, United States
Keywords: Science, Life Sciences, Applied science, Technology, Health, Medical

Disclaimer: AlphaGalileo is not responsible for the accuracy of content posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Testimonials

For well over a decade, in my capacity as a researcher, broadcaster, and producer, I have relied heavily on Alphagalileo.
All of my work trips have been planned around stories that I've found on this site.
The under embargo section allows us to plan ahead and the news releases enable us to find key experts.
Going through the tailored daily updates is the best way to start the day. It's such a critical service for me and many of my colleagues.
Koula Bouloukos, Senior manager, Editorial & Production Underknown
We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet

We Work Closely With...


  • e
  • The Research Council of Norway
  • SciDevNet
  • Swiss National Science Foundation
  • iesResearch
Copyright 2025 by AlphaGalileo Terms Of Use Privacy Statement