A New Path in Pancreatic Cancer Treatment: The Therapeutic Promise of GOT2
en-GBde-DEes-ESfr-FR

A New Path in Pancreatic Cancer Treatment: The Therapeutic Promise of GOT2

19/04/2025 Compuscript Ltd

A new wave of scientific interest is spotlighting GOT2—glutamic-oxaloacetic transaminase 2—as a compelling therapeutic target in the fight against pancreatic cancer, one of the most lethal and treatment-resistant malignancies. This mitochondrial enzyme, deeply embedded in glutamine metabolism, plays a central role in sustaining cancer cell survival and growth. By regulating the malate-aspartate shuttle, GOT2 maintains cellular redox balance, generates essential metabolic intermediates, and influences energy production pathways that fuel tumor proliferation.

Unlike conventional approaches that often face resistance or poor efficacy, targeting GOT2 offers a multi-pronged strategy. Its activity is closely tied to the production of aspartate and α-ketoglutarate, vital for nucleotide and protein biosynthesis and ATP generation. These metabolic outputs are particularly essential for pancreatic cancer cells, which rely on a distinct, non-canonical glutamine metabolic route often driven by oncogenic KRAS mutations. Inhibiting GOT2 disrupts this pathway, leading to a collapse in redox equilibrium and accumulation of reactive oxygen species, thereby triggering cellular senescence and loss of proliferative capacity.

The enzyme’s significance extends beyond metabolism. Recent discoveries have unveiled an unexpected nuclear function of GOT2, where it operates as a fatty acid transporter that activates PPARδ, a transcription factor involved in immune regulation. By promoting the expression of genes like PTGS2, CSF1, and REG3G, GOT2 fosters an immunosuppressive microenvironment, hindering T-cell infiltration and supporting tumor immune evasion. These dual functions position GOT2 as a linchpin at the intersection of metabolic programming and immune suppression, highlighting its appeal as a target for novel combination therapies.

Despite its critical role, pancreatic tumors exhibit adaptive resistance mechanisms. Some cancer cells circumvent GOT2 loss through macropinocytosis or by acquiring metabolites from cancer-associated fibroblasts, allowing them to replenish aspartate independently. Understanding and counteracting these resistance pathways is essential for optimizing GOT2-based treatments.

The pursuit of effective GOT2 inhibitors is ongoing, with promising early candidates like amino oxyacetate showing potential. Future research must refine these compounds and explore their integration with immunotherapies or redox-modulating treatments.

# # # # #
Genes & Diseases publishes rigorously peer-reviewed and high quality original articles and authoritative reviews that focus on the molecular bases of human diseases. Emphasis is placed on hypothesis-driven, mechanistic studies relevant to pathogenesis and/or experimental therapeutics of human diseases. The journal has worldwide authorship, and a broad scope in basic and translational biomedical research of molecular biology, molecular genetics, and cell biology, including but not limited to cell proliferation and apoptosis, signal transduction, stem cell biology, developmental biology, gene regulation and epigenetics, cancer biology, immunity and infection, neuroscience, disease-specific animal models, gene and cell-based therapies, and regenerative medicine.
Scopus CiteScore: 7.3
Impact Factor: 6.9

# # # # # #

More information: https://www.keaipublishing.com/en/journals/genes-and-diseases/
Editorial Board: https://www.keaipublishing.com/en/journals/genes-and-diseases/editorial-board/
All issues and articles in press are available online in ScienceDirect (https://www.sciencedirect.com/journal/genes-and-diseases ).
Submissions to Genes & Disease may be made using Editorial Manager (https://www.editorialmanager.com/gendis/default.aspx ).
Print ISSN: 2352-4820
eISSN: 2352-3042
CN: 50-1221/R
Contact Us: editor@genesndiseases.com
X (formerly Twitter): @GenesNDiseases (https://x.com/GenesNDiseases )

# # # # # #
Reference
Jiarui Bu, Zeyu Miao, Qing Yang, GOT2: New therapeutic target in pancreatic cancer, Genes & Diseases,
Volume 12, Issue 4, 2025, 101370, https://doi.org/10.1016/j.gendis.2024.101370

Funding Information:
National Natural Science Foundation of China 31972890
Department of Science and Technology of Jilin Province, China 20230101139JC
Jiarui Bu, Zeyu Miao, Qing Yang, GOT2: New therapeutic target in pancreatic cancer, Genes & Diseases,
Volume 12, Issue 4, 2025, 101370, https://doi.org/10.1016/j.gendis.2024.101370
Attached files
  • Alternative mechanisms bypass GOT2 silencing in pancreatic cancer cells. CAFs can secrete pyruvate in the pancreatic tumor microenvironment.
  • Metabolic and immune functions of GOT2 in pancreatic cancer cells. First, GOT2 catalyzes transamination reaction in mitochondria, and the products can directly promote cell proliferation.
19/04/2025 Compuscript Ltd
Regions: Europe, Ireland, Asia, China
Keywords: Health, Medical, Science, Chemistry, Life Sciences, People in science

Disclaimer: AlphaGalileo is not responsible for the accuracy of content posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Testimonials

For well over a decade, in my capacity as a researcher, broadcaster, and producer, I have relied heavily on Alphagalileo.
All of my work trips have been planned around stories that I've found on this site.
The under embargo section allows us to plan ahead and the news releases enable us to find key experts.
Going through the tailored daily updates is the best way to start the day. It's such a critical service for me and many of my colleagues.
Koula Bouloukos, Senior manager, Editorial & Production Underknown
We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet

We Work Closely With...


  • e
  • The Research Council of Norway
  • SciDevNet
  • Swiss National Science Foundation
  • iesResearch
Copyright 2025 by AlphaGalileo Terms Of Use Privacy Statement