An innovative system for seeing into the bowels of volcanos
en-GBde-DEes-ESfr-FR

An innovative system for seeing into the bowels of volcanos

18/09/2024 CNRS

A team of researchers from the CNRS and the Paris Institute of Planetary Physics1 has developed an innovative imaging method that can probe the bowels of a volcano with unparalleled resolution and depth. This new method is based on the deployment of a network of geophones that capture not only the powerful shaking of earthquakes, but also the seismic noise caused by wind, the ocean, and human activity.
Their study was conducted on La Soufrière volcano in Guadeloupe, and provided a 3D view of its internal structure to a depth of 10 kilometres, with a precision on the order of 100 metres. It confirmed the existence, in the depths beneath La Soufrière, of a large magma storage zone structured by a network of interconnected magma pockets.This imaging tool can be applied to any geophone network and could record volcanic activity much more thoroughly, thereby providing greater anticipation of volcanic eruptions throughout the world.
The study recently appeared in the journal Communications, Earth & Environment.

1- From the Langevin Institute (CNRS/ESPCI – PSL Université) and the Paris Institute of Planetary Physics (CNRS/Université Paris Cité).
Matrix imaging as a tool for high-resolution monitoring of deep volcanic plumbing systems with seismic noise. Elsa Giraudat, Arnaud Burtin, Arthur Le Ber, Mathias Fink, Jean-Christophe Komorowski & Alexandre Aubry. Communications, Earth & Environment, 16 September 2024.
Archivos adjuntos
  • a) 3D view of the volcano obtained by confocal migration of the reflection matrix. The image obtained is blurred by distortions of seismic waves caused by the volcano’s heterogeneities. b) Matrix imaging of the volcano obtained via adaptive focusing laws compensating for its heterogeneities. The image reveals La Soufrière’s tortuous conduit to a depth of 5 km. Beyond that, a magma storage zone was identified with a complex array of horizontal magma lenses connected to one another. © Elsa Giraudat
18/09/2024 CNRS
Regions: Europe, France
Keywords: Science, Earth Sciences, Applied science, Computing, Technology

Disclaimer: AlphaGalileo is not responsible for the accuracy of news releases posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Testimonios

We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet
AlphaGalileo is a great source of global research news. I use it regularly.
Robert Lee Hotz, LA Times

Trabajamos en estrecha colaboración con...


  • BBC
  • The Times
  • National Geographic
  • The University of Edinburgh
  • University of Cambridge
  • iesResearch
Copyright 2024 by DNN Corp Terms Of Use Privacy Statement