Genomic treasure hunt: unraveling the conservation conundrum of sinojackia
en-GBde-DEes-ESfr-FR

Genomic treasure hunt: unraveling the conservation conundrum of sinojackia

18/09/2024 TranSpread

The Jacktree (Sinojackia xylocarpa), native to China, is renowned for its unique spindle-shaped fruits and ornamental appeal. However, its survival is threatened by factors such as limited population size, fragmented habitats, and low germination rates caused by tough, lignified pericarps. Addressing these challenges requires in-depth genetic research to develop effective conservation measures.

Scientists from Nanjing Forestry University and Nanjing Agricultural University published a study (DOI: 10.1093/hr/uhae166) in the journal Horticulture Research on June 18, 2024. This research presents the first chromosome-scale genome assembly of the Jacktree, revealing genetic insights into its endangered status and identifying key factors behind its germination barriers. The study integrates genome sequencing, population genomics, and molecular biology to address the conservation challenges of this valuable plant.

The study links the Jacktree’s population decline to genetic bottlenecks following the last glacial period. Genomic analysis showed that the tree’s fruit pericarps accumulate high levels of lignin, cellulose, and hemicellulose, forming a rigid structure that inhibits seed germination. Elevated expression of key lignin biosynthesis genes contributes to the hardening of the pericarps. The findings emphasize the critical role of lignin in restricting seed growth, highlighting the need for targeted conservation strategies, including genetic diversity enhancement through artificial breeding and environmental adjustments, such as increased soil moisture, to support germination. These insights offer a roadmap for better management and restoration of this endangered species.

Dr. Jia-Yu Xue, lead researcher, emphasized, “This study provides vital genetic insights into the factors limiting Jacktree germination and conservation. By identifying the genetic basis of lignified pericarps, we can devise targeted strategies to improve germination rates and promote the sustainable recovery of this endangered species.”

The study’s findings have far-reaching implications for conserving the Jacktree and similar endangered ornamental plants. By understanding the genetic basis of lignified pericarps, conservation efforts can focus on breeding new cultivars with reduced lignin content. Additionally, environmental management, such as optimizing soil moisture and enhancing beneficial microbial interactions, could further boost germination and restoration efforts for this valuable species.

###

References

DOI

10.1093/hr/uhae166

Original Source URL

https://doi.org/10.1093/hr/uhae166

About Horticulture Research

Horticulture Research is an open access journal of Nanjing Agricultural University and ranked number two in the Horticulture category of the Journal Citation Reports ™ from Clarivate, 2023. The journal is committed to publishing original research articles, reviews, perspectives, comments, correspondence articles and letters to the editor related to all major horticultural plants and disciplines, including biotechnology, breeding, cellular and molecular biology, evolution, genetics, inter-species interactions, physiology, and the origination and domestication of crops.

Paper title: The jacktree genome and population genomics provides insights for the mechanisms of the germination obstacle and the conservation of endangered ornamental plants
Archivos adjuntos
  • Morphology and high-quality genome assembly of the Sinojackia xylocarpa. a Flowering and fruiting branches of S. xylocarpa. b Genome features across 12 chromosomes of S. xylocarpa. From the outermost to innermost circles are chromosome ideograms, gene density (from blue to red), GC content, TE (transposable elements) density (from blue to red), and collinear genomic blocks.
18/09/2024 TranSpread
Regions: North America, United States, Asia, China
Keywords: Science, Agriculture & fishing

Disclaimer: AlphaGalileo is not responsible for the accuracy of news releases posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Testimonios

We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet
AlphaGalileo is a great source of global research news. I use it regularly.
Robert Lee Hotz, LA Times

Trabajamos en estrecha colaboración con...


  • BBC
  • The Times
  • National Geographic
  • The University of Edinburgh
  • University of Cambridge
  • iesResearch
Copyright 2024 by DNN Corp Terms Of Use Privacy Statement