New catalyst developed for sustainable propylene production from biomass
en-GBde-DEes-ESfr-FR

New catalyst developed for sustainable propylene production from biomass


Achieving carbon neutrality requires the effective use of renewable biomass. In the production of biodiesel, for instance, glycerol is generated as a major byproduct. Researchers at Osaka Metropolitan University have developed a new catalyst that efficiently converts a derivative of glycerol into bio-based propylene, contributing to sustainable chemical production.

Propylene is typically produced from petroleum and is widely used in the manufacture of plastics, such as automobile bumpers and food containers. The research team, led by Associate Professor Shin Takemoto and Professor Hiroyuki Matsuzaka from the Graduate School of Science, developed a catalyst that selectively breaks down the oxygen-carbon bond in allyl alcohol, a derivative of glycerol, to produce bio-based propylene.

The newly developed catalyst enables the selective reduction of allyl alcohol to propylene with high efficiency, using renewable energy sources such as hydrogen or electricity. The catalyst contains a special molecule known as a metalloligand, which is designed to facilitate the reversible binding of two metals within the catalyst. This feature enhances the reaction’s efficiency, provides high selectivity, and minimizes the formation of byproducts.

“Our research offers a sustainable alternative to conventional propylene production methods and can contribute to the development of an environmentally friendly chemical industry,” said Professor Takemoto. “We look forward to further advancing this technology and exploring its broader applications.”

The findings were published in Chemical Communications.

Funding
JSPS (18H04268, 20H02758, 21K05088, 22K19054) and Masuyakinen basic research foundation.

Conflicts of interest
There are no conflicts to declare.

###

About OMU
Established in Osaka as one of the largest public universities in Japan, Osaka Metropolitan University is committed to shaping the future of society through “Convergence of Knowledge” and the promotion of world-class research. For more research news, visit https://www.omu.ac.jp/en/ and follow us on social media: X, Facebook, Instagram, LinkedIn.
Journal: Chemical Communications
Title: Bimetallic Ru–Ir/Rh complexes for catalytic allyl alcohol reduction to propylene
DOI: 10.1039/D4CC01711K
Author(s): Kanade Kawaji, Mina Tsujiwaki, Ayaka Kiso, Yukina Kitajo, Manami Kitamura, Minako Nishimura, Junya Horikawa, Haruto Ikushima, Shin Takemoto, and Hiroyuki Matsuzaka
Publication date: 6 August 2024
URL: https://doi.org/10.1039/D4CC01711K
Archivos adjuntos
  • Turning glycerol component into propylene: A new catalyst can selectively reduce allyl alcohol, leading to a bio-based propylene. Credit: Osaka Metropolitan University
Regions: Asia, Japan
Keywords: Science, Chemistry, Business, Chemicals

Disclaimer: AlphaGalileo is not responsible for the accuracy of news releases posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Testimonios

We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet
AlphaGalileo is a great source of global research news. I use it regularly.
Robert Lee Hotz, LA Times

Trabajamos en estrecha colaboración con...


  • BBC
  • The Times
  • National Geographic
  • The University of Edinburgh
  • University of Cambridge
  • iesResearch
Copyright 2024 by DNN Corp Terms Of Use Privacy Statement