Discovering new details in atomic hyperfine structures
en-GBde-DEes-ESfr-FR

Discovering new details in atomic hyperfine structures

24/09/2024 SciencePOD

A new approach to analysing infrared spectra reveal 20 new energy levels in the hyperfine structure of Protactinium

Samuel Jarman, SciencePOD

Since the late 1960s, the Laboratoire Aimé Cotton (LAC) in Orsay, France, has made significant progress in the classification of complex atomic spectra. These advances have been driven both by the development of Fourier transform spectroscopy, and through novel theoretical interpretations of atomic spectra.

In new research published in EPJ D, Sophie Kröger from the Berlin University of Technology and Economics carried out detailed analysis of Protactinium's infrared (IR) spectrum, revealing 20 new energy levels that were previously undetectable with earlier methods employed by the LAC. The study showcases important progress in the precision of atomic spectrum measurements, which could soon offer deeper insights into atomic structures and interactions.

IR spectra reveal the wavelengths absorbed by atomic samples as they interact with infrared light. These spectra can provide detailed information about hyperfine structures: tiny variations in atomic energy levels that result from complex electromagnetic interactions between atomic nuclei and surrounding clouds of orbiting electrons, which manifest as distinct peaks in the IR spectra.

In her study, Kröger focused on the IR spectrum of Protactinium, which exhibits an especially intricate hyperfine splitting. To enhance the accuracy of previous LAC measurements, she employed an advanced mathematical approach to Fourier transform spectroscopy. This technique converts variations in the IR signal into a spectrum showing how signal varies at different frequencies, allowing for high-precision analysis of the spectral lines.

By comparing the experimental data of hyperfine peak wavelengths with theoretical models, Kröger was able to identify 20 new energy levels in Protactinium’s hyperfine structure. By expanding on this approach, she now hopes to uncover even more subtle energy levels in future studies. Overall, the research highlights the significant strides made in atomic spectroscopy and, could pave the way for fascinating new discoveries in atomic and molecular physics.

Reference

S Kröger, High precision in a Fourier transform spectrum of Protactinium: extensive weighted least-squares fits of peak wavenumbers for analysis of fine and hyperfine structure, Eur. Phys. J. D 78, 104 (2024). https://doi.org/10.1140/epjd/s10053-024-00895-7

S Kröger, High precision in a Fourier transform spectrum of Protactinium: extensive weighted least-squares fits of peak wavenumbers for analysis of fine and hyperfine structure, Eur. Phys. J. D 78, 104 (2024). https://doi.org/10.1140/epjd/s10053-024-00895-7
Archivos adjuntos
  • The Fourier Transform spectrum of Protactinium
24/09/2024 SciencePOD
Regions: Europe, France, Ireland
Keywords: Science, Energy, Physics

Disclaimer: AlphaGalileo is not responsible for the accuracy of news releases posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Testimonios

We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet
AlphaGalileo is a great source of global research news. I use it regularly.
Robert Lee Hotz, LA Times

Trabajamos en estrecha colaboración con...


  • BBC
  • The Times
  • National Geographic
  • The University of Edinburgh
  • University of Cambridge
  • iesResearch
Copyright 2024 by DNN Corp Terms Of Use Privacy Statement